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NUCLEI, PRIMES AND THE RANDOM MATRIX
CONNECTION

FRANK W. K. FIRK AND STEVEN J. MILLER

Abstract. In this article, we discuss the remarkable connection
between two very different fields, number theory and nuclear physics.
We describe the essential aspects of these fields, the quantities
studied, and how insights in one have been fruitfully applied in the
other. The exciting branch of modern mathematics – random ma-
trix theory – provides the connection between the two fields. We
assume no detailed knowledge of number theory, nuclear physics,
or random matrix theory; all that is required is some familiarity
with linear algebra and probability theory, as well as some results
from complex analysis. Our goal is to provide the inquisitive reader
with a sound overview of the subjects, placing them in their histor-
ical context in a way that is not traditionally given in the popular
and technical surveys.
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1. Summary

In the early 1970’s a remarkable connection was unexpectedly dis-
covered between two very different fields, nuclear physics and number
theory, when it was noticed that random matrix theory accurately mod-
eled many problems in each. Random matrix theory was first used in
the early 1900’s in the study of the statistics of population charac-
teristics [Wis]. The field developed rapidly in the 1950’s when it was
found to describe the spacing distributions of adjacent resonances (of
the same spin and parity) observed in the interaction of low energy
neutrons with nuclei [Wig5], and it flourished in the 1970’s following
a chance encounter between Hugh Montgomery and Freeman Dyson
[Mon] (when they saw it also predicted answers to many of the most
difficult problems in number theory).

In this review article we describe the subjects and the quantities
studied, and how insights in one field have been fruitfully applied
in the other. We assume no familiarity with either subject; for the
most part, basic linear algebra and probability theory suffice (though
we need some results from complex analysis on analytic continua-
tion and contour integration for some of the number theory calcua-
tions). As there are many mathematical surveys of the subject, as well
as some popular accounts [Ha, Roc] of how the connection between
the fields was noticed, our goal is to explain the broad brushstrokes
of the theory without getting bogged down in the technical details.
For those interested in a more mathematical survey, we recommend
[Con2, Con3, FSV, KaSa2, KeSn3] (see also Section 1.8 of [Meh2]).
Our point is to give the flavor of the subject, and bring these amazing
connections to the attention of a wide audience. We concentrate on a
representative sample of results and problems, and urge the interested
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reader to sample the bibliography. In particular, though we discuss
many of the current statistics studied, we discuss the computations in
detail only for the classical problem of the density of normalized eigen-
values of real symmetric matrices and the 1-level density for the family
of Dirichlet L-functions. We chose these examples as the key steps
in the analysis of these problems are similar to many others, but the
mathematical prerequisites to follow the calculations are significantly
less.

In particular, our choice means that there are many important topics
which will have only the briefest of mention (if any). To do the field jus-
tice would require a significantly longer article than this. Our hope is
that by keeping the pre-requisites modest a large audience will be able
to appreciate the striking similarities between two very different fields,
and get a sense as to the nature of the computations. There are a few
places where real and complex analysis is used (Fourier transforms and
the residue theorem), as well as some abstract algebra or group the-
ory (mostly group homomorphisms from (Z/mZ)∗ to complex numbers
of absolute value 1). We state all needed results, and when possible
provide brief explanations and proofs. While in the last part of the pa-
per we concentrate on Dirichlet L-functions, we do mention additional
families of L-functions (the background material is more substantial
here, and we give only the briefest mention of the needed facts).

The paper is organized as follows. In §2 we first give some number
theory preliminaries to set the stage, describing some of the problems
researchers are interested in, and how they are connected with the ze-
ros of the Riemannn zeta function. We mention the famous Riemann
Hypothesis, and how its veracity is related to understanding the prime
numbers. This provides the motivation for studying the behavior of
these zeros. The amazing observation, first noticed in the 1970’s, is
that many properties of these zeros can be modeled by random matrix
theory, which had enjoyed a remarkable success in modeling nuclear
physics. We briefly describe random matrix theory and discuss why
it is applicable to so many problems. In §3 we describe some of the
history of nuclear physics, concentrating on the experimental results
which laid the groundwork for the introduction of random matrix the-
ory. We then sketch the proof of one of the most important results
in the subject, Wigner’s semi-circle law, in §4. While other results
are more closely related to the number theory quantities we wish to
study, we give this proof as it highlights in a very accessible manner
the techniques needed to attack a variety of problems. We then return
to number theory in §5 and discuss some (but by no means all!) of
the earliest applications of random matrix theory. We concentrate on
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the 1-level density, highlighting the similarities between this calculation
and the proof of Wigner’s semi-circle law. We give an interpretation of
our number theory results in the language of nuclear physics, and then
conclude with a very brief summary of some of the current avenues
being explored.

For the reader: The core of the paper is Sections 2 and 3, where
we describe the number theory problems and the nuclear physics his-
tory which led to the development of random matrix theory, as well as
briefly summarizing random matrix theory. Sections 4 and 5 are more
advanced (especially the latter), where we give details of the calcula-
tions. Many of the more technical comments and some proofs of claims
are relegated to the footnotes; these may safely be skipped by the reader
interested in the broad brushstrokes of the theory and subject. For the
benefit of the reader, we have also included in the footnotes definitions
and explanations of much of the assumed background material to help
keep the paper accessible.

2. Introduction

2.1. Number Theory Preliminaries. The primes1 are the building
blocks of number theory: every integer can be written uniquely as a
product of prime powers [HW].2 One of the most important questions
we can ask about primes is also one of the most basic: how many
primes are there at most x? In other words, how many building blocks
are there up to a given point?

Euclid proved over 2000 years ago that there are infinitely many
primes; so, if we let π(x) denote the number of primes at most x, we
know limx→∞ π(x) = ∞. Euclid’s proof is still used in courses around
the world.3 Can we do better? How rapidly does π(x) go to infinity?

1An integer n ≥ 2 is prime if the only positive integers that divide it are 1 and
itself; if n ≥ 2 is not prime we say it is composite. The number 1 is neither prime
nor composite, but instead is called a unit.

2This property is called unique factorization, and is one of the most important
properties of prime numbers. If 1 were considered a prime, then unique factorization
would fail; for example, if 1 were prime then 35 · 7 and 12009 · 35 · 7 would be two
different factorizations of 1701.

3The proof is by contradiction. Assume there are only finitely many primes.
We label them p1, p2, . . . , pn. Consider the number m = p1p2 · · · pn + 1. Either
this is a new prime not on our list, or it is composite. If it is composite, it must
be divisible by some prime; however, it cannot be divisible by any prime on our
list, as each of these give remainder 1. Thus m is either prime or divisible by a
prime not on our list. In either case, our list was incomplete, proving that there
are infinitely many primes. With a little bit of effort, one can show that Euclid’s
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In particular, what can we say about limx→∞ π(x)/x, which represents
the probability that a number at most x is prime?

The answer is given by the Prime Number Theorem, which states
the number of primes at most x is Li(x) + o(Li(x)), where Li(x) =∫ x

2
dt/ log t and for x large, Li(x) is approximately x/ log x.4 While it

is possible to prove the prime number theorem elementarily [Erd, Sel2],
the most informative proofs use complex numbers5 and complex analy-
sis, and lead to the fascinating connection between number theory and
nuclear physics. One of the most fruitful approaches to understanding
the primes is to understand properties of the Riemann zeta function,
ζ(s), which is defined for ℜ(s) > 1 by

ζ(s) =
∞∑

n=1

1

ns
; (2.1)

the series converges for ℜ(s) > 1 by the integral test.6 By unique
factorization, it turns out that we may also write ζ(s) as a product
over primes;7 this is called the Euler product of ζ(s), and is one of its
most important properties:8

ζ(s) =

∞∑

n=1

1

ns
=

∏

p prime

(
1− 1

ps

)−1

. (2.2)

argument proves there is a C > 0 such that π(x) ≥ C log log x. The first few primes
generated in this manner are 2, 3, 7, 43, 13, 53, 5, 6221671, 38709183810571, 139,
2801. A fascinating question is whether or not every prime is eventually listed (see
[Sl]).

4The notation f(x) = o(g(x)) means limx→∞ f(x)/g(x) = 0.
5A complex number z ∈ C is of the form z = x + iy. We call x the real part and

y the imaginary part; we frequently denote these by ℜ(z) and ℑ(z), respectively.
6Let s = σ + it. Then |ζ(s)| ≤∑∞

n=1 n−σ. The integral test from calculus states

that this series converges if and only if
∫∞

1 x−σdx converges, and this integral

converges if σ > 1.
7To see this, use the geometric series formula (see Footnote 9) to expand (1 −

p−s)−1 as
∑∞

k=0 p−ks and note that n−s occurs exactly once on each side (and
clearly every term from expanding the product is of the form n−s for some n.

8 We give two quick proofs of the importance of the Euler product by showing how
it implies there are infinitely many primes. The first is

∑
1/ns → ∞ as s → 1+,

which means there must be infinitely many primes as otherwise the product is
finite. The second proof is to note

∑
1/n2 = π2/6 is irrational; if there were only

finitely many primes than the product would be rational. See for example [MT-B]
for details.
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Initially defined only for ℜ(s) > 1, using complex analysis the Riemann
zeta function can be meromorphically continued9 to all of C, having
only a simple pole with residue 1 at s = 1. It satisfies the functional
equation10 [Da, MT-B]

ξ(s) =
1

2
s(s− 1)Γ

(s

2

)
π− s

2 ζ(s) = ξ(1− s). (2.3)

The distribution of the primes is a difficult problem; however, the dis-
tribution of the positive integers is not, and has been completely known
for quite some time! The hope is that we can understand

∑
n 1/ns as

this involves sums over the integers, and somehow pass this knowledge
on to the primes through the Euler product (see Footnote 8 for two
examples).

Riemann [Ri] (see [Ed] for an English translation) observed a fasci-
nating connection between the zeros of ζ(s) and the error term in the
prime number theorem. As this relation is the starting point for our
story, we describe the details in some length in the next paragraph.
This part is a bit more technical and relies on complex analysis. The
reader may safely skip most of the next paragraph; the key piece for the
rest of the paper is (2.8), where we show how the primes are connected
to the zeros of ζ(s) (the function Λ(n) which appears is defined in (2.4).

One of the most natural things to do to a complex function is to take
contour integrals of its logarithmic derivative [La, SS]; this will yield
information about zeros and poles (we’ll see later that we can get even
more information if we weight the integral with a test function). There
are two expressions for ζ(s); however, for the logarithmic derivative it
is clear that we should use the Euler product over the sum expansion,

9The subject of meromorphic continuation belongs to complex analysis. For the
benefit of the reader who hasn’t seen this, we give a brief example that will be of use
throughout this paper, namely the geometric series formula 1 + r + r2 + r3 + · · · =
1/(1− r). Note that while the sum makes sense only when |r| < 1, 1/(1− r) is well-
defined for all r 6= 1 and agrees with the sum whenever |r| < 1. We say 1/(1− r)
is a meromorphic continuation of the sum.

10One proof is to use the Gamma function, Γ(s) =
∫∞

0
e−tts−1dt. A simple

change of variables gives
∫∞

0
x

1
2
s−1e−n2πxdx = Γ

(
s
2

)
/nsπs/2. Summing over n

represents a multiple of ζ(s) as an integral. After some algebra we find Γ
(

s
2

)
ζ(s) =∫∞

1 x
1
2
s−1ω(x)dx +

∫∞

1 x− 1
2
s−1ω

(
1
x

)
dx, with ω(x) =

∑+∞
n=1 e−n2πx. Using Poisson

summation, we find ω
(

1
x

)
= − 1

2 +− 1
2x

1
2 + x

1
2 ω(x), which yields π− 1

2
sΓ
(

s
2

)
ζ(s) =

1
s(s−1) +

∫∞

1
(x

1
2
s−1 +x− 1

2
s− 1

2 )ω(x)dx, from which the claimed functional equation

follows.
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as the logarithm of a product is the sum of the logarithms. Let

Λ(n) =

{
log p if n = pr for some integer r

0 otherwise.
(2.4)

We find

ζ ′(s)

ζ(s)
= −

∑

p

log p · p−s

1− p−s
= −

∞∑

n=1

Λ(n)

ns
(2.5)

(this is proved by using the geometric series formula to write (1−p−s)−1

as
∑∞

k=0 1/ps, collecting terms and then using the definition of Λ(n)).
Moving the negative sign over and multiplying by xs/s, we find

1

2πi

∫

(c)

−ζ ′(s)

ζ(s)

xs

s
ds =

1

2πi

∫

(c)

∑

n≤x

Λ(n)
(x

n

)s ds

s
, (2.6)

where we are integrating over some line ℜ(s) = c > 1. The integral
on the right hand side is 1 if n < x and 0 if n > x (by choosing x
non-integral, we don’t need to worry about x = n), and thus gives∑

n≤x Λ(n). By shifting contours and keeping track of the poles and

zeros of ζ(s), the residue theorem11 [La, SS] implies that the left hand
side is

x−
∑

ρ:ζ(ρ)=0

xρ

ρ
; (2.7)

the x term comes from the pole of ζ(s) at s = 1 (remember we count
poles with a minus sign), while the xρ/ρ term arises from zeros; in both
cases we must multiply by the residue, which is xρ/ρ (it can be shown
that ζ(s) has neither a zero nor a pole at s = 0).12 The Riemann
zeta function vanishes whenever ρ is a negative even integer; we call

11Let f be a meromorphic function with only finitely many poles on an open
set U which is bounded by a ‘nice’ curve γ. Thus at each point z0 ∈ U we have
f(x) =

∑∞
n=N an(z − z0)

n with N > −∞. If N > 0 we say f has a zero of order
N . If N < 0 we say f has a pole of order −N , and in this case we call a−1 the
residue of f at z0 (for clarity, we often denote this by Res(f, z0)). If f does not
have a pole at z0, then the residue is zero. Our assumption implies that there are
only finitely many points where the residue is non-zero. The residue theorem states
1

2πi

∮
γ

f(z)dz =
∑

z∈U Res(f, z). One useful variant is to apply this to f ′(z)/f(z),

which then counts the number of zeros of f minus the number of poles; another
is to look at f ′(z)/f(z) · g(z) where g(z) is analytic, which we will do later when
stating the explicit formula for the zeros of the Riemann zeta function.

12Some care is required with this sum, as
∑

1/|ρ| diverges. The solution involves
pairing the contribution from ρ with ρ; see for example [Da].
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these the trivial zeros. These terms contribute
∑∞

k=−1 x−2k/(2k) =

−1
2
log(1− x−2). This leads to the following beautiful formula:

x−
∑

ρ:ℜ(ρ)∈(0,1)
ζ(ρ)=0

xρ

ρ
− 1

2
log(1− x−2) =

∑

n≤x

Λ(n) (2.8)

If we write n as pr, the contribution from all pr pieces with r ≥ 2 is
bounded by 2x1/2 log x for x large,13 thus we really have a formula for
the sum of the primes at most x, with the prime p weighted by log p.
Through partial summation, knowing the weighted sum is equivalent
to knowing the unweighted sum.14

We can now see the connection between the zeros of the Riemann
zeta function and counting primes at most x. The contribution from
the trivial zeros is well-understood, and is just −1

2
log(1−x−2). The re-

maining zeros, whose real parts are in [0, 1], are called the non-trivial
or critical zeros. They are far more important and more mysterious.
The smaller the real part of these zeros of ζ(s), the smaller the error.
Due to the functional equation, however, if ζ(ρ) = 0 for a critical zero
ρ then ζ(1−ρ) = 0 as well.15 Thus the ‘smallest’ the real part can be is
1/2. This is the celebrated Riemann Hypothesis.16 It has a plethora
of applications throughout number theory and mathematics; counting
primes is but one of many.17 It is clear, however, that the distribution

13To see this, note
∑

p2≤x log p ≤ x1/2 log x, while the contribution from n = pr

with r ≥ 3 is bounded by
∑

r≥3

∑
pr≤x log p ≤ x1/32 log2 x (this is because pr ≤ x

implies r ≤ log2 x ≤ 2 log x).
14Partial summation is the discrete analogue of integration by parts [MT-B]. In

our case,
∑

p≤x log p ∼ x is equivalent to
∑

p≤x 1 ∼ x/ log x.
15Note this is only true for zeros in the critical strip, namely 0 ≤ ℜ(ρ) ≤ 1; for

zeros outside the critical strip we can and do have zeros of ζ(s) not corresponding
to zeros of ζ(1 − s) because of poles of the Gamma function.

16The Riemann Hypothesis is probably the most important mathematical aside
ever in a paper. Riemann [Ed, Ri] wrote (translated into English; note when he
talks about the roots being real, he’s writing the roots as 1/2+iγ, and thus γ ∈ R is
the Riemann Hypothesis): ...and it is very probable that all roots are real. Certainly
one would wish for a stricter proof here; I have meanwhile temporarily put aside the
search for this after some fleeting futile attempts, as it appears unnecessary for the
next objective of my investigation. Though not mentioned in the paper, Riemann
had developed a terrific formula for computing the zeros of ζ(s), and had checked
(but never reported!) that the first few were on the critical line ℜ(s) = 1/2. His
numerical computations were only discovered decades later when Siegel was looking
through Riemann’s papers.

17The prime number theorem is in fact equivalent to the statement that ℜ(ρ) < 1
for any zero of ζ(s). The prime number theorem was first proved independently by
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of the zeros of the Riemann zeta function will be of primary (in both
senses of the word!) importance.

If we assume the Riemann Hypothesis, all the zeros in the criti-
cal strip (0 ≤ ℜ(ρ) ≤ 1) lie on the critical line ℜ(s) = 1/2, and
it makes sense to talk about the distribution between adjacent ze-
ros. The purpose of this note is to discuss one of the most powerful
models used to predict the behavior of these zeros, namely random
matrix theory. While other methods have since been developed, ran-
dom matrix theory (which we describe in the next subsection) was
the first to make truly accurate, testable predictions. The general
idea is that the behavior of zeros of the Riemann zeta function are
well-modeled by the behavior of eigenvalues of certain matrices. This
idea had previously been successfully used to model the distribution of
energy levels of heavy nuclei (some of the fundamental papers and
books on the subject, ranging from experiments to theory, include
[BFFMPW, DLL, Dy1, Dy2, FLM, FRG, FKPT, Gau, HH, HPB, Hu,
Meh1, Meh2, MG, Po, Wig1, Wig2, Wig3, Wig4, Wig5, Wig6]). We
describe the development of random matrix theory in nuclear physics
in detail in the next section, and then delve into more of the details of
the connection between the two subjects in §4 and §5.

2.2. Random Matrix Theory Preliminaries. Before describing what
we mean by random matrix theory and random matrix ensembles (i.e.,
sets of matrices), we quickly review the needed analysis and probability
material, and then in the next subsection discuss why random matrix
theory is so applicable at modeling a variety of problems.

Let p(x) be a continuous or discrete probability distribution. For
notational convenience we assume p is continuous and use integral
notation below, though similar statements hold in the discrete case.
This means p(x) ≥ 0,

∫∞
−∞ p(x)dx = 1, and if X is a random variable

with density p, then the probability X takes on a value in [a, b] is just∫ b

a
p(x)dx.

Hadamard [Had] and de la Vallée Poussin [dlVP] in 1896. Each proof crucially used
results from complex analysis, which is hardly surprising given that Riemann had
shown π(x) is related to the zeros of the meromorphic function ζ(s). It was not until
almost 50 years later that Erdös [Erd] and Selberg [Sel2] obtained elementary proofs
of the prime number theorem (in other words, proofs that did not use complex
analysis, which was quite surprising as the prime number theorem was known to
be equivalent to a statement about zeros of a meromorphic function). See [Gol2]
for some commentary on the history of elementary proofs.
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Let X be a random variable with density p. We define the kth mo-
ment of p, denoted µk or E[Xk], by

µk = E[Xk] :=

∫ ∞

−∞
xkp(x)dx. (2.9)

The zeroth moment is always 1, and the first moment is called the mean.
The second moment is related to the variance. Recall the variance σ2

is defined by

σ2 = E[(X − µ)2] =

∫ ∞

−∞
(x− µ)2p(x)dx, (2.10)

and equals the second moment if the mean is zero. For convergence
issues, we typically are interested in random variables with zero mean,
variance 1 and finite higher moments.18 While at first it might seem
restrictive to assume we have mean 0 and variance 1, this is actually
equivalent to the first and second moments are finite.19 The moments
are extremely important for understanding a density. While it is not
the case that the moments uniquely determine a probability distri-
bution20, they do for sufficiently nice distributions. The situation is
similar to the theory of Taylor series. It is sadly not the case that ev-
ery ‘nice’ function agrees with its Taylor series in an arbitrarily small
neighborhood about the point of expansion, even if by ‘nice’ we mean
infinitely differentiable!21 See [ShTa, Si] for more details.

18By this we mean
∫∞

−∞ |x|kp(x)dx < ∞. If the integrand is not absolutely
convergent, then the value could depend on how we tend to infinity. The standard
example is the Cauchy distribution, p(x) = (π(1+x2))−1. Note

∫∞

−∞ |x|p(x)dx =∞,

limA→∞

∫ A

−A xp(x)dx = 0 and limA→∞

∫ 2A

−A xp(x)dx = π−1 log 2.
19The reason is we can always adjust our probability distribution, in this case,

to have mean 0 and variance 1 by simple translations and rescaling. For example,
if the density p has mean µ and variance σ, then g(x) = σ−1p(σx + µ) has mean
0 and variance 1. Thus the third moment (or the fourth if the third vanishes) are
the first moments that truly show the ‘shape’ of the density.

20For x ∈ [0,∞), consider f1(x) = (2πx)−1/2 exp
(
−(log x)2/2

)
and f2(x) =

f1(x) [1 + sin(2π log x)]. For r ∈ N, the rth moment of f1 and f2 is exp(r2/2). The
reason for the non-uniqueness of moments is that the moment generating function
Mf(t) =

∫∞

−∞ exp(tx)f(x)dx does not converge in a neighborhood of the origin. See

[CaBe], Chapter 2.
21The standard example is the function f(x) = exp(−1/x2) if |x| > 0 and 0

otherwise. By using the definition of the derivative and L’Hopital’s rule, we see
f (n)(0) = 0 for all n, but clearly this function is non-zero if |x| > 0. Thus the radius
of convergence is zero! This example illustrates how much harder real analysis can
be than complex analysis. There if a function of a complex variable has even one
derivative then it has infinitely many, and is given by its Taylor series in some
neighborhood of the point.
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We can now describe random matrix theory and the ensembles we’ll
study. Consider a real symmetric matrix A, so

A =





a11 a12 a13 · · · a1N

a12 a22 a23 · · · a2N
...

...
...

. . .
...

a1N a2N a3N · · · aNN



 = AT , aij = aji.

We fix a density p, and define

Prob(A) =
∏

1≤i≤j≤N

p(aij).

This means

Prob (A : aij ∈ [αij , βij]) =
∏

1≤i≤j≤N

∫ βij

xij=αij

p(xij)dxij.

The goal is to understand properties of the eigenvalues of A. We
accomplish this by studying a related measure where we place point
masses at the normalized eigenvalues. We use the Dirac delta fun-
tionals δ(x − x0), which is a unit point mass at x0. This means∫

f(x)δ(x− x0)dx = f(x0).
22

To each real symmetric matrix A, we attach a probability measure23

µA,N(x) =
1

N

N∑

i=1

δ

(
x− λi(A)

2
√

N

)
; (2.11)

in §4.1 we’ll see why we are normalizing the eigenvalues as we have
done here. This measure counts the number of normalized eigenvalues
in an interval:

∫ b

a

µA,N(x)dx =
#
{
λi : λi(A)

2
√

N
∈ [a, b]

}

N
. (2.12)

22 We can consider the probability densities AN (x)dx, where A is a probability
density and AN (x) = N · A(Nx). As N → ∞ almost all the probability (mass)
is concentrated in a narrower and narrower band about the origin; we let δ(x) be
the limit with all the mass at one point. It is a discrete (as opposed to continuous)
probability measure, with infinite density but finite mass. Note that δ(x−x0) acts
like a unit point mass; however, instead of having its mass concentrated at the
origin, it is now concentrated at x0.

23As A is real symmetric, the eigenvalues are real (see Footnote 19) and thus
this measure is well defined.
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Using the definition of the Dirac delta functional, the kth moment,
which we denote MA,N(k), is readily computed:

MA,N(k) =

∑N
i=1 λi(A)k

2kN
k
2
+1

. (2.13)

While this is a nice, explicit formula for the kth moment, it seems
useless as we do not know the location of the eigenvalues of A; we will
see in §4 that this is not the case at all.

There are many other ensembles of matrices worth studying. In addi-
tion to real symmetric matrices, complex Hermitian and symplectic are
frequently studied.24 In this paper we concentrate on real symmetric
matrices.

Random matrix theory models the behavior of a system by an ap-
propriate set of matrices. Specifically, we calculate some quantity (say
the probability two normalized eigenvalues are less than half the aver-
age spacing apart) for each matrix and then average over all matrices
in our family. The hope, which is born out in many cases (ranging
from number theory to nuclear physics to bus routes in Cuernevaca,
Mexico25), is that these system averages are close to the behavior of the
system of interest. We describe this correspondence in greater detail
below.

2.3. Why Random Matrix Theory. Why do random matrix models
have a chance of giving useful answers to questions in nuclear physics

24These ensembles have behavior that is often described by a parameter β, which
is 1 for real symmetric, 2 for complex Hermitian and 4 for symplectic matrices.

25See [BBDS, KrSe]. We quote from [BBDS] who quote from [KrSe]: There is
no covering company responsible for organizing the city transport. Consequently,
constraints such as a time table that represents external influence on the transport
do not exist. Moreover, each bus is the property of the driver. The drivers try to
maximize their income and hence the number of passengers they transport. This
leads to competition among the drivers and to their mutual interaction. It is known
that without additive interaction the probability distribution of the distances between
subsequent buses is close to the Poisonian distribution and can be described by the
standard bus route model.... A Poisson-like distribution implies, however, that the
probability of close encounters of two buses is high (bus clustering) which is in con-
flict with the effort of the drivers to maximize the number of transported passengers
and accordingly to maximize the distance to the preceding bus. In order to avoid the
unpleasant clustering effect the bus drivers in Cuernevaca engage people who record
the arrival times of buses at significant places. Arriving at a checkpoint, the driver
receives the information of when the previous bus passed that place. Knowing the
time interval to the preceding bus the driver tries to optimize the distance to it by
either slowing down or speeding up. The papers go on to show the behavior is well-
modeled by random matrix theory (specifically, ensembles of complex Hermitian
matrices)!
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Figure 1. Molecules in a box

and other subjects? We consider one of the central problems of classical
mechanics, namely the orbits in a solar system. It is possible to write
down a closed form solution in the special case when there are just
two point masses interacting through gravity.26 The three body prob-
lem, however, defies closed form solutions.27 From physical grounds we
know of course that there is a solution; however, for our solar system we
cannot analyze the solution well enough to determine whether or not
billions of years from now Pluto will escape from the sun’s influence!28

As difficult as the above problem is, the situation is significantly
worse when we try to understand the behavior of heavy nuclei. Ura-
nium, for instance, has over 200 protons and neutrons in its nucleus,
each subject to and contributing to complex forces. If we completely
understood the theory of the nucleus, we could predict the energy lev-
els; sadly, we are far from a complete understanding! As we’ll see in
the next section, physicists were able to gain some insights into the
nuclear structure by shooting neutrons into the nucleus and analyzing
the results; however, a complete understanding of the nucleus was, and
still is, lacking.

How should we attack such a problem? It’s useful to recall other
complex problems from physics and how they were successfully mod-
eled. We consider a standard problem in statistical mechanics, namely
calculating the pressure on a wall. Consider the box in Figure 1. For
simplicity we assume that every molecule is moving either left or right,

26Explicitly, given two points with masses m1 and m2 and initial velocities ~v1

and ~v2 and located at ~r1 and ~r2, we can describe how the system evolves in time
given that gravity is the only force in play.

27While there are known solutions for special arrangements of special masses,
three bodies in general position is still open; see [Wh] for more details.

28Whether or not Pluto will regain planetary status is an entirely different
question.
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and all are traveling at the same speed. If we want to calculate the
pressure on the left wall, we need to know how many particles strike
the wall in an infinitesimal time. Thus we need to know how many par-
ticles are close to the left wall and moving towards it. In a room there
would be at least a mole (about 6.022 · 1023) of air molecules, which
means that this computation is well beyond our abilities. Without go-
ing into all of the physics (see for example [Re]), we can get a rough
idea of what is happening. The complexity, the enormous number of
configurations of positions of the molecules, actually helps us. For each
configuration we can calculate the pressure due to that configuration.
We then average over all configurations, and it turns out that a generic
configuration is close to the system average. This theory has enjoyed
great success, and suggests a way to model nuclear physics.

Returning to our problem about heavy nuclei, from quantum me-
chanics we have the following equation governing our problem:

HΨn = EnΨn, (2.14)

where H is the Hamiltonian, whose entries depend on system, En are
the energy levels and Ψn are the energy eigenfunctions. Thus we have
‘reduced’ nuclear physics to linear algebra. Unfortunately, there are
two difficulties with this approach. The first is that H is an infinite
dimensional matrix, and the second is that we do not know any of
the entries! This makes for quite a daunting task! Wigner’s great in-
sight was that this enormous complexity is similar to what we saw in
Statistical Mechanics, and actually helps us. The interactions are so
complex we might as well regard each entry as some randomly chosen
number. Thus instead of considering the true H for the system, we con-
sider N×N real symmetric matrices with entries independently chosen
from nice probability distributions. We compute whatever statistics we
are interested in for these matrices, average over all matrices, and then
take the N → ∞ scaling limit. The main result is that the behav-

ior of the eigenvalues of an arbitrary matrix is often well

approximated by the behavior obtained by averaging over all

matrices, and this is a good model for many systems, rang-

ing from the energy levels of heavy nuclei to the zeros of the

Riemann zeta function.29

29This is reminiscent of the Central Limit Theorem. For example, if we average
over all sequences of tossing a fair coin 2N times, we obtain N heads, and most
sequences of 2N tosses will have approximately N heads, where approximately
means deviations on the order of

√
N .
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3. Nuclear Physics History

Below we discuss some of the history of investigations of the nucleus,
concentrating on the parts that led to the introduction of random ma-
trix theory to the subject. We mention some of the connections with
number theory, which will be explored in much greater detail later.

3.1. Introduction. The Riemann Hypothesis asserts that the non-
trivial zeros of the Riemann zeta function are of the form ρ = 1/2+ iγρ

with γρ real. About the year 1913, Pólya conjectured30 that the γρ are
the eigenvalues of a naturally occurring, unbounded, self-adjoint oper-
ator, and are therefore real.31 Later, Hilbert contributed to the conjec-
ture, and reportedly introduced the phrase ‘spectrum’ to describe the
eigenvalues of an equivalent Hermitian operator, apparently by analogy
with the optical spectra observed in atoms. This remarkable analogy
pre-dated Heisenberg’s Matrix Mechanics and the Hamiltonian formu-
lation of Quantum Mechanics by more than a decade. Not surprisingly,
the Pólya-Hilbert conjecture was considered so intractable that it was
not pursued for decades, and Random Matrix Theory remained in a
dormant state. To quote Diaconis [Di1]: “Historically, Random Matrix
Theory was started by Statisticians [Wis] studying the correlations be-
tween different features of population (height, weight, income...). This
led to correlation matrices with (i, j) entry the correlation between the
ith and jth features. If the data were based on a random sample from
a larger population, these correlation matrices are random; the study
of how the eigenvalues of such samples fluctuate was one of the first
great accomplishments of Random Matrix Theory.” Diaconis [Di2] has
given an extensive review of Random Matrix Theory from the perspec-
tive of a statistician. A strong argument can be made, however, that
Random Matrix Theory, as we know it today in the Physical Sciences,
began in a formal mathematical sense with the Wigner surmise [Wig5]
concerning the spacing distribution of adjacent resonances (of the same
spin and parity) in the interactions between low-energy neutrons and
nuclei, discussed below.

30The first reference to this conjecture in the literature might not have been until
1973 by Montgomery [Mon].

31If v is an eigenvector with eigenvalue λ of a Hermitian matrix A (so A = A∗

with A∗ the complex conjugate transpose of A, then v∗(Av) = v∗(A∗v) = (Av)∗v;

the first expression is λ||v||2 while the last is λ||v||2, with ||v||2 = v∗v =
∑
|vi|2 non-

zero. Thus λ = λ, and the eigenvalues are real. This is one of the most important
properties of Hermitian matrices, as it allows us to order the eigenvalues.
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3.2. Nuclear Physics and Random Matrix Theory. The period
from the mid-1930’s to the late 1970’s was the Golden Age of Neu-
tron Physics; widespread interest in understanding the physics of the
nucleus, coupled with the need for accurate data in the design of nu-
clear reactors, made the field of Neutron Physics of global importance
in fundamental Physics, Technology, Economics, and Politics. In the
mid-1950’s, a discovery was made that turned out to have far-reaching
consequences beyond anything that those working in the field could
have imagined. For the first time, it was possible to study the mi-
crostructure of the continuum in a strongly-coupled, many-body sys-
tem, at very high excitation energies. This unique situation came about
as the result of the following facts:

• Neutrons, with kinetic energies of a few electron-volts, excite
states in compound nuclei at energies ranging from about 5 mil-
lion electron-volts to almost 10 million electron-volts – typical
neutron binding energies. Schematically, see Figure 2.

• Low-energy resonant states in heavy nuclei (mass numbers greater
than about 100) have lifetimes in the range 10−14 to 10−15 sec-
onds, and therefore they have widths of about 1 eV. The com-
pound nucleus loses all memory of the way in which it is formed.
It takes a relatively long time for sufficient energy to reside in a
neutron before being emitted. This is a highly complex, statis-
tical process. In heavy nuclei, the average spacing of adjacent
resonances is typically in the range from a few eV to several
hundred eV.

• Just above the neutron binding energy, the angular momentum
barrier restricts the possible range of values of total spin of a
resonance, J (J = I + i + l, where I is the spin of the target
nucleus, i is the neutron spin, and l is the relative orbital an-
gular momentum). This is an important technical point.

• The neutron time-of-flight method provides excellent energy
resolution at energies up to several keV. (See Firk [Fi] for a
review of time-of-flight spectrometers.)
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Figure 2. An energy-level diagram showing the loca-
tion of highly-excited resonances in the compound nu-
cleus formed by the interaction of a neutron, n, with a
nucleus of mass number A. Nature provides us with a
narrow energy region in which the resonances are clearly
separated, and are observable.

A 1-eV neutron travels 1 meter in 72.3 microseconds. At non-
relativistic energies, the energy resolution ∆E at an energy E is simply:

∆E ≈ 2E∆t/tE , (3.1)

where ∆t is the total timing uncertainty, and tE is the flight time for
a neutron of energy E.

In 1958, the two highest-resolution neutron spectrometers in the
world had total timing uncertainties ∆t ≈ 200 nanoseconds. For a
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flight-path length of 50 meters the resolution was ∆E ≈ 3 eV at 1
keV.

In 238U + n, the excitation energy is about 5 MeV; the effective
resolution for a 1 keV-neutron was therefore

∆E/Eeffective ≈ 6 · 10−7. (3.2)

(at 1 eV, the effective resolution was about 10−11).
Two basic broadening effects limit the sensitivity of the method, they

are:

(1) Doppler broadening of the resonance profile due to the thermal
motion of the target nuclei; it is characterized by the quantity
δ ≈ 0.3

√
E/A (eV), where A is the mass number of the target.

If E = 1 keV and A = 200, δ ≈ 0.7 eV, a value that may be
ten times greater than the natural width of the resonance.

(2) Resolution broadening of the observed profile due to the finite
resolving power of the spectrometer. For a review of the exper-
imental methods used to measure neutron total cross sections
see Firk and Melkonian [FM]. Lynn [Ly] has given a detailed
account of the theory of neutron resonance reactions.

In the early 1950’s, the field of low-energy neutron resonance spec-
troscopy was dominated by research groups working at nuclear reactors.
They were located at National Laboratories in the United States, the
United Kingdom, Canada, and the former USSR. The energy spectrum
of fission neutrons produced in a reactor is moderated in a hydroge-
nous material to generate an enhanced flux of low-energy neutrons.
To carry out neutron time-of-flight spectroscopy, the continuous flux
from the reactor is “chopped” using a massive steel rotor with fine slits
through it. At the maximum attainable speed of rotation (about 20,000
rpm), and with slits a few thousandths-of-an-inch in width, it is possi-
ble to produce pulses each with a duration approximately 1 µsec. The
chopped beams have rather low fluxes, and therefore the flight paths
are limited in length to less than 50 meters. The resolution at 1keV
is then ∆E ≈ 20 eV, clearly not adequate for the study of resonance
spacings about 10 eV.

In 1952, there were only four accelerator-based, low-energy neutron
spectrometers operating in the world. They were at Columbia Univer-
sity in New York City, Brookhaven National Laboratory, the Atomic
Energy Research Establishment, Harwell, England, and at Yale Univer-
sity. The performances of these early accelerator-based spectrometers
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were comparable with those achieved at the reactor-based facilities. It
was clear that the basic limitations of the neutron-chopper spectrom-
eters had been reached, and therefore future developments in the field
would require improvements in accelerator-based systems.

In 1956, a new high-powered injector for the electron gun of the
Harwell electron linear accelerator was installed to provide electron
pulses with very short durations (typically less than 200 nanoseconds)
[FRG]. The pulsed neutron flux (generated by the (γ, n) reaction)
was sufficient to permit the use of a 56-meter flight path; an energy
resolution of 3 eV at 1 keV was achieved.

At the same time, Professors Havens and Rainwater (pioneers in
the field of neutron time-of-flight spectroscopy) and their colleagues at
Columbia University were building a new 385-MeV proton synchrocy-
clotron a few miles north of the campus (at the Nevis Laboratory). The
accelerator was designed to carry out experiments in meson physics and
low-energy neutron physics (neutrons generated by the (p, n) reaction).
By 1958, they had produced a pulsed proton beam with duration of
25 nanoseconds, and had built a 37-meter flight path [RDRH, DRRH].
The hydrogenous neutron moderator generated an effective pulse width
of about 200 nanoseconds for 1 keV-neutrons. In 1960, the length of the
flight path was increased to 200 meters, thereby setting a new standard
in neutron time-of-flight spectroscopy [GRPH].

3.3. The Wigner Surmise. At a conference on Neutron Physics by
Time-of-Flight, held in Gatlinburg, Tennessee on November 1st and
2nd, 1956, Professor Eugene Wigner (Nobel Laureate in Physics, 1963)
presented his surmise regarding the theoretical form of the spacing dis-
tribution of adjacent neutron resonances (of the same spin and parity)
in heavy nuclei. At the time, the prevailing wisdom was that the spac-
ing distribution had a Poisson form (see, however, [GP]). The limited
experimental data then available was not sufficiently precise to fix the
form of the distribution (see [Hu]). The following quotation, taken
from Wigner’s presentation at the conference, introduces the concept
of random matrices in Physics, for the first time:

“Perhaps I am now too courageous when I try to guess the distribu-
tion of the distances between successive levels. I should re-emphasize
that levels that have different J-values (total spin) are not connected
with each other. They are entirely independent. So far, experimental
data are available only on even-even elements. Theoretically, the sit-
uation is quite simple if one attacks the problem in a simple-minded
fashion. The question is simply ‘what are the distances of the charac-
teristic values of a symmetric matrix with random coefficients?’
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We know that the chance that two such energy levels coincide is in-

finitely unlikely. We consider a two-dimensional matrix,

(
a11 a12

a21 a22

)
,

in which case the distance between two levels is
√

(a11 − a22)2 + 4a2
12.

This distance can be zero only if a11 = a22 and a12 = 0. The difference
between the two energy levels is the distance of a point from the origin,
the two coordinates of which are (a11 − a22) and a12. The probability
that this distance is S is, for small values of S, always proportional to
S itself because the volume element of the plane in polar coordinates
contains the radius as a factor.

The probability of finding the next level at a distance S now becomes
proportional to SdS. Hence the simplest assumption will give the prob-
ability

π

2
ρ2 exp

(
−π

4
ρ2S2

)
SdS (3.3)

for a spacing between S and S + dS.
If we put x = ρS = S/〈S〉, where 〈S〉 is the mean spacing, then the

probability distribution takes the standard form

p(x)dx =
π

2
x exp

(
−πx2/4

)
dx, (3.4)

where the coefficients are obtained by normalizing both the area and the
mean to unity.”

This form, in which the probability of zero spacing is zero, is strik-
ingly different from the Poisson form

p(x)dx = exp(−x)dx (3.5)

in which the probability is a maximum for zero spacing. The form of
the Wigner surmise had been previously discussed by Wigner himself
[Wig1], and by Landau and Smorodinsky [LS], but not in the spirit of
Random Matrix Theory.

It is interesting to note that the Wigner distribution is a special
case of a general statistical distribution, named after Professor E.
H. Waloddi Weibull (1887-1979), a Swedish engineer and statistician
[Wei]. For many years, the distribution has been in widespread use in
statistical analyses in industries such as aerospace, automotive, elec-
tric power, nuclear power, communications, and life insurance.32 The
distribution gives the lifetimes of objects and is therefore invaluable in

32In fact, one of the authors has used Weibull distributions to model run pro-
duction in major league baseball, giving a theoretical justification for Bill James’
Pythagorean Won-Loss formula [Mil3].
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studies of the failure rates of objects under stress (including people!).
The Weibull probability density function is

Wei(x; k, λ) =
k

λ

(x

λ

)k−1

exp
(
−(x/λ)k

)
(3.6)

where x ≥ 0, k > 0 is the shape parameter, and λ > 0 is the scale pa-
rameter. We see that Wei(x; 2, 2/

√
π) = p(x), the Wigner distribution.

Other important Weibull distributions are given in the following list

• Wei(x; 1, 1) = exp(−x) the Poisson distribution;
• Wei(x; 2, λ) = Ray(λ), the Rayleigh distribution;
• Wei(x; 3, λ) is approximately a normal distribution.33

For Wei(x; k, λ), the mean is λΓ (1 + (1/k)), the median is λ log(2)1/k,
and the mode is λ(k − 1)1/k/k1/k, if k > 1. As k → ∞, the Weibull
distribution has a sharp peak at λ.34

At the time of the Gatlinburg conference, no more than 20 s-wave
neutron resonances had been clearly resolved in a single compound nu-
cleus and therefore it was not possible to make a definitive test of the
Wigner surmise. Immediately following the conference, J. A. Harvey
and D. J. Hughes [HH], and their collaborators, working at the fast-
neutron-chopper-groups at the high flux reactor at the Brookhaven Na-
tional Laboratory, and at the Oak Ridge National laboratory, gathered
their own limited data, and all the data from neutron spectroscopy
groups around the world, to obtain the first global spacing distribu-
tion of s-wave neutron resonances. Their combined results, published
in 1958, showed a distinct lack of very closely spaced resonances, in
agreement with the Wigner surmise.

By late 1959, the experimental situation had improved, greatly. At
Columbia University, two students of Professors Havens and Rainwater
completed their PhD theses; one, Joel Rosen [RDRH], studied the first
55 resonances in 238U+n up to 1 keV, and the other, J Scott Desjardins
[DRRH], studied resonances in two silver isotopes (of different spin) in
the same energy region. These were the first results from the new
high-resolution neutron facility at the Nevis cyclotron.

At Harwell, Firk, Lynn, and Moxon [FLM] completed their study
of the first 100 resonances in 238U + n at energies up to 1.8 keV;

33Obviously this Weibull cannot be a normal distribution, as they have very
different decay rates for large x, and this Weibull is a one-sided distribution! What
we mean is that for 0 ≤ x ≤ 2 this Weibull is well approximated by a normal
distribution which shares its mean and variance, which are (respectively) Γ(4/3) ≈
.893 and Γ(5/3)− Γ(4/3)2 ≈ .105.

34Historically, Frechet introduced this distribution in 1927, and Nuclear Physi-
cists often refer to the Weibull distribution as the Brody distribution [BFFMPW].
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Figure 3. High resolution studies of the total neutron
cross section of 238U, in the energy range 400eV - 1800eV
(12). The vertical scale (in units of ”barns”) is a measure
of the effective area of the target nucleus.

their measurement of the total neutron cross section for the interaction
238U + n in the energy range 400–1800 eV is shown in Figure 3.

When this experiment began in 1956, no resonances had been re-
solved at energies above 500 eV. The distribution of adjacent spacings
of the first 100 resonances in the single compound nucleus, 238U + n,
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Figure 4. A Wigner distribution fitted to the spacing
distribution of 932 s-wave resonances in the interaction
238U + n at energies up to 20 keV.

ruled out an exponential distribution and provided the best evidence
(then available) in support of Wigner’s proposed distribution.

Over the last half-century, numerous studies have not changed the
basic findings. At the present time, almost 1000 s-wave neutron reso-
nances in the compound nucleus 239U have been observed in the energy
range up to 20 keV. The latest results, with their greatly improved sta-
tistics, are shown in Figure 4 [DLL].

3.4. Further Developments. The first numerical investigation of the
distribution of successive eigenvalues associated with random matrices
was carried out by Porter and Rozenzweig in the late 1950’s [PR].
They diagonalized a large number of matrices where the elements are
generated randomly but constrained by a probability distribution. The
analytical theory developed in parallel with their work: Mehta [Meh1],
Mehta and Gaudin [MG], and Gaudin [Gau]. At the time it was clear
that the spacing distribution was not influenced significantly by the
chosen form of the probability distribution. Remarkably, the n × n
distributions had forms given almost exactly by the original Wigner
2× 2 distribution.
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The linear dependence of p(x) on the normalized spacing x (for small
x) is a direct consequence of the symmetries imposed on the (Hamil-
tonian) matrix, H(hij). Dyson [Dy1] discussed the general mathemati-
cal properties associated with random matrices and made fundamental
contributions to the theory by showing that different results are ob-
tained when different symmetries are assumed for H . He introduced
three basic distributions; in Physics, only two are important, they are:

• the Gaussian Othogonal Ensemble (GOE) for systems in which
rotational symmetry and time-reversal invariance holds (the
Wigner distribution): p(x) = (π/2)x exp (−(π/4)x2);

• the Gaussian Unitary Ensemble (GUE) for systems in which
time-reversal invariance does not hold (French et al. [FKPT]):
p(x) = (32/π2)x2 exp(−(π/4)x2).

The mathematical details associated with these distributions are
given in [Meh1].

The impact of these developments was not immediate in Nuclear
Physics. At the time, the main research endeavors were concerned
with the structure of nuclei–experiments and theories connected with
Shell-, Collective-, and Unified models, and with the nucleon-nucleon
interaction. The study of Quantum Statistical Mechanics was far re-
moved from the main stream. Almost two decades went by before
Random Matrix Theory was introduced in other fields of Physics (see,
for example, Bohigas, Giannoni and Schmit [BGS] and Alhassid [Al]).

3.5. From Physics to Number Theory. Interestingly, the next de-
velopment occurred in an area having nothing to do with Physics. In
the field of Number Theory, perhaps the greatest unsolved problem
has to do with the Riemann conjecture (that dates from the mid-19th

century): if ζ(s) =
∑

1/ns, then every complex number ρ in the crit-
ical strip (0 ≤ ℜ(ρ) ≤ 1) at which the analytic continuation of ζ(s)
has a non-trivial zero has real part equal to 1/2. In 1914, Hardy [Har]
proved that there are infinitely many zeros of the zeta function on the
line critical line ℜ(s) = 1/2. Later Selberg [Sel1] proved a small posi-
tive percentage are on this line; this was improved by Levinson [Lev] to
a third, and now thanks to Conrey [Con1] we know at least two-fifths
lie on the line.35

35There is an interesting perspective to proving more than a third of the zeros lie
on the critical line. As zeros off the line occur in complex conjugate pairs, proving
more than a third of all non-trivial zeros lie on the line is equivalent to more than
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In the early 1970’s, Hugh Montgomery, a mathematician at the Uni-
versity of Michigan, was investigating the relative spacing of the zeros
of the zeta function [Mon] (because of applications to the class number
problem36). Let us recall that, if we have a series of points distributed
randomly along a line, with average density normalized to 1, and we
treat the coordinates of the points as independent random variables,
then the probability of finding j points in a given interval of length x
is the Poisson distribution

xj

j!
exp(−x). (3.7)

For our real symmetric and complex Hermitian random matrix en-
sembles, the probability of finding more than one eigenvalue in a short
interval is less than that given by the Poisson distribution – the eigen-
values of the random matrix are said to ‘repel’ each other. The pair
and higher level correlation function describe this effect (we discuss
these functions in greater detail later in the paper; knowing all the
correlation functions is equivalent to knowing the neighbor spacings).
Montgomery studied the pair correlation function for the zeros of the
zeta function and he gave evidence that it has the asymptotic form be

1−
(

sin πx

πx

)2

. (3.8)

At a chance meeting between Montgomery and Dyson at Princeton
in the early 1970’s, Montgomery showed his pair correlation function
to Dyson, who recognized it as the pair correlation function of eigen-
values of random Hermitian matrices in a Gaussian Unitary Ensemble

a half of all zeros with real part at least 1/2 are on the line! Thus, in this sense, a
‘majority’ of all zeros are on the critical line.

36The class number measures how much unique factorization fails in the ring of
integers of a finite extension of Q, and thus is an extremely important property
of these fields. For example, Z[i] = {a + ib : a, b ∈ Z} has unique factorization,

while Z[i
√

5] = {a + ib
√

5 : a, b ∈ Z} does not (in the latter, note we can write 6 as

either 2 · 3 or (1 + i
√

5)(1 − i
√

5), and none of these four numbers can be factored

as (a + ib
√

5)(c + id
√

5) without one of the two factors being a unit (the units are

numbers in the ring whose norm is 1; in Z[i
√

5], these numbers are ±1 (in Z[
√

5]

we would also have numbers such as 2 +
√

5, as (2 +
√

5)(−2 +
√

5) = 1). The
class number problem is to find all imaginary quadratic fields with a given class
number; see [St, Wa] for more details and results. It turns out (see [CI]) that if
there are many small (relative to the average spacing) gaps between zeros of ζ(s) on
the critical line, then there are terrific lower bounds for the class number; another
connection between the class number and zeros of L-functions is through the work
of Goldfeld [Gol1] and Gross-Zagier [GZ].
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Figure 5. Odlyzko’s test of the Montgomery conjec-
ture, involving 70 million Riemann zeros near 1020.

(an ensemble without time-reversal invariance). In a masterful numeri-
cal calculation of the distribution of spacings between zeros of the zeta
function, Andrew Odlyzko [Od1, Od2] tested the Montgomery conjec-
ture by studying millions of normalized zeros near the 1020th and the
1022nd zero of ζ(s). His computed correlation function shows remark-
able agreement with Montgomery’s form (see Figure 5).

As we shall see, this work continues to have a profound impact on
developments in contemporary Number Theory.

In the remaining two sections, we explore one statistic from random
matrix theory (the density of eigenvalues) and one from number theory
(the 1-level density of low-lying zeros). Though these statistics are not
exactly analogous, they are similar. The reason we chose to study these
two are that the general steps of the proofs are similar, and thus this
provides a nice introduction to how intuitions and methods in one field
can be transferred to another.

4. Wigner’s Semi-circle law

4.1. Wigner’s Semi-circle Law (Statement). We state and prove
a version of Wigner’s semi-circle law below. We refer the reader to
[ERSY, ESY, TV1, TV2] for the most general version and proof of the
semi-circle law as well as spacings between adjacent eigenvalues. We
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content ourselves with this special case as this version is easy to state
and prove, and the conditions are frequently satisfied in practice.

Theorem 4.1 (Wigner’s semi-circle law). Consider the ensemble of
N × N real symmetric matrices with entries independent, identically
distributed random variables from a fixed probability distribution p(x)
with mean 0, variance 1, and other moments finite. Then for almost
all A, as N →∞

µA,N(x) −→
{

2
π

√
1− x2 if |x| ≤ 1

0 otherwise.

In other words, the number of normalized eigenvalues in an interval
[a, b] ⊂ [−1, 1] is found by integrating the semi-circle over that interval.

Note that such a result could never hold for all A, as given any ǫ > 0
there is always a small (though rapidly tending to zero!) probability
that we’ve chosen a matrix that is within ǫ units from being a diagonal
(i.e., each non-diagonal entry is at most |ǫ|).

For example, consider Figures 6 and 7. In the first we’ve drawn
the entries from the standard normal. This satisfies the conditions of
Wigner’s semi-circle law, and we see already that with just 400× 400
matrices the fit is excellent.

How essential are the conditions in the theorem? Does the result
hold even if these conditions are violated, but perhaps the proof is
just harder (or currently unknown)? To investigate this, we choose
instead of the standard normal the Cauchy distribution (π(1 + x2))−1.
This distribution clearly has infinite variance, and thus obviously fails
to satisfy the conditions. (It also has no mean as the integral of |x|
is infinite.) We see that the behavior is decidedly non-semi-circular
(the huge probabilities at the end are the probabilities of observing an
eigenvalue that far or further).

We will use the Method of Moments to prove the semi-circle law. We
briefly summarize how we can pass from knowledge of the moments to
knowledge of the eigenvalue distribution. Recall the kth moment is∑N

i=1 λi(A)k/2kN
k
2
+1. Imagine we had a 1×1 matrix and we knew the

first moment of the eigenvalues (well, here it would just be eigenvalue).
We have one equation in one unknown:

λ1(A)/2 = µ1; (4.1)

this is clearly solvable and we can express λ1(A) in terms of µ1. Imagine
now we have a 2 × 2 matrix. Then we have two equations in two
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Figure 6. A histogram plot of the normalized eigen-
values for 500 matrices, each 400× 400. The entries are
chosen independently from the standard normal p(x) =
(2π)−1/2 exp(−x2/2).

unknowns:

1

25/2
(λ1(A) + λ2(A)) = µ1

1

24

(
λ1(A)2 + λ2(A)2

)
= µ2. (4.2)

For almost all µ1 and µ2 this is solvable (actually, we do not have to
worry about this ever not being solvable, as the λi(A) are always drawn
from a matrix, and thus the equations will be consistent). We can
therefore express the two eigenvalues in terms of the first two moments.
Similarly, if we looked at the first three moments of a 3× 3 matrix we
would have enough information to find the eigenvalues. In the general
case, we need to know the first N moments to find the eigenvalues of
an N ×N matrix;37 as we are letting N →∞, we need to compute all
the moments to determine the eigenvalues.

The idea of the proof is as follows. For each matrix A we calculate
its moments; let us denote the kth moment of A by MA,N(k). The

37Of course, one has to invert these relations to find the eigenvalues!
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Figure 7. A histogram plot of the normalized eigen-
values for 500 matrices, each 400× 400. The entries are
drawn from the Cauchy distribution (π(1 + x2))−1. The
bin on the extreme right represents all normalized eigen-
values that larger or large (and similarly for the bin on
the extreme left).

expected value of this is

MN(k) = E[MA,N(k)] =

∫ ∞

−∞
· · ·
∫ ∞

−∞
MA,N (k)Prob(A)dA. (4.3)

We then show that limN→∞ MN(k) = C(k), the kth moment of the
semi-circle. This is almost, but not quite, enough to then conclude
that a central limit theorem type situation occurs38, and a generic
eigenvalue measure is close to the system average (which converges
to the semi-circle as N → ∞). The reason it is not sufficient is that
we must also control the variances39; however, this is easily done by
similar arguments (see for example [HM, MMS]).

38See [GS, Fel] for proofs of the central limit theorem, or [MT-B] for a sketch of
the proof.

39For example, imagine for all N we always had half the moments equal 0 and
the other half equal 2C(k); then the average is C(k) but no measure is close to the
system average.
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4.2. Wigner’s Semi-circle Law (Sketch of Proof). We sketch the
proof of Wigner’s Semi-circle Law. As we’ve stated earlier, the reason
we chose to prove this (as opposed to many of the other results) is that
this proof is mostly self-contained, and highlights the key features of
proofs in the subject.

There are typically three steps in working with random matrix en-
sembles (or the corresponding number theory quantities). We state
these steps below, and then elaborate in great detail.

(1) Determine the correct scale.

(2) Develop an explicit formula relating what we want to study to
something we understand.

(3) Use an averaging formula to analyze the quantities above.

Note it is not always trivial to figure out what is the correct statistic
to study, and frequently very advanced combinatorics are needed to
analyze the quantities.40

We describe these steps in detail for our random matrix ensembles
and the semi-circle law. The key input is the following basic result
from linear algebra, the Eigenvalue Trace Lemma.41

Theorem 4.2 (Eigenvalue Trace Lemma). Let A be an N ×N matrix
with eigenvalues λi(A). Then

Trace(Ak) =

N∑

n=1

λi(A)k. (4.4)

As the trace of a matrix is the sum of its diagonal entries,

Trace(Ak) =

N∑

i1=1

· · ·
N∑

ik=1

ai1i2ai2i3 · · ·aiN i1. (4.5)

The Eigenvalue Trace Lemma allows us to do the first two steps,
namely determine the correct scale and relate what we want to study

40Many of the papers in the field have large sections devoted to handling combina-
torics; see for instance [HM, Rub, RS]. Interestingly, sometimes the combinatorics
cannot be handled, and in [Gao] we believe the number theory and random matrix
theory agree where both have been calculated, but we cannot do the combinatorics
to prove this.

41The proof is trivial if A is diagonal or upper diagonal, following by definition.
As we only need this result for real symmetric matrices, which can be diagonalized,
we only give the proof in this case. Let S be such that A = SΛS−1 with Λ diagonal.
The claim follows from Ak = SΛkS−1 and Trace(ABC) = Trace(BCA).
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(the eigenvalues) to what we know (the matrix elements we randomly
choose). We’ll see later the analogue of this in number theory.

⋄ For the first step, we take k = 2 and find

Trace(A2) =
N∑

i=1

N∑

j=1

aij =
N∑

ℓ=1

λℓ(A)2 = N〈λ(A)2〉, (4.6)

where 〈λ(A)2〉 denotes the average of the square of the eigenvalues.
As aij = aji and these are drawn from a probability distribution with
mean 0 and variance 1, we have E[a2

ij ] = 1, as this is just the variance.
Thus the expected value of N times the average eigenvalue square is
just N2, so the average eigenvalue square is of size N , so (heuristically)

the average eigenvalue is of size
√

N .42 Why do we then normalize the
eigenvalues by dividing by 2

√
N instead of

√
N? The reason is to make

the final formula ‘clean’ (i.e., this allows us to say the semi-circle law
instead of the semi-ellipse); arguments such as these will capture the
dependence on the key parameter (in this case, the N -dependence),
but it will not catch constant dependence.43

⋄ For the second step, we want to understand the eigenvalues but it
is the matrix elements we choose. The Eigenvalue Trace Lemma says∑

λi(A)k = Trace(Ak); thus (2.13) becomes

MA,N(k) =

∑N
i=1 λi(A)k

2kN
k
2
+1

=
Trace(Ak)

2kN
k
2
+1

. (4.7)

This is a terrific exchange. We have discussed how knowing the mo-
ments of the eigenvalues suffices to determine the eigenvalues; this al-
lows us to express these moments in terms of the quantities we are

42With a little more work, we could calculate the variance of the average eigen-
value squared, using either the Central Limit Theorem or even Chebyshev’s Theo-
rem (from probability).

43This is similar in some sense to dimensional analysis arguments in physics,
which detect parameter dependence but not the constants. For example, imagine a
pendulum of mass m (in kilograms), length L (in meters) where the difference in rest
height (when the pendulum is down) and the raised height (where it is at angle θ)
is L0 meters. We assume the only force acting is gravity, with constant g (in meters
per second squared). The period is how long (in seconds) it takes the pendulum
to do a complete cycle, must be a function of m, L, L0 and g; however, the only
combinations of these quantities that give units of seconds are

√
L/g and

√
L0/g;

thus the period must be a function of these two expressions. The correct answer
turns out to be (at least for small initial displacements) approximately 2π

√
L/g;

we are able to deduce the correct functional form, though the constants are beyond
such analysis.
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choosing.

⋄ For the third and final step, we note that in order for (4.7) to be
useful we must be able to average it over all A in our family; in other
words, we must compute

MN(k) = E[MA,N (k)]

=

∫ ∞

−∞
· · ·
∫ ∞

−∞

Trace(Ak)

2kN
k
2
+1

Prob(A)dA

=

∫ ∞

−∞
· · ·
∫ ∞

−∞

Trace(Ak)

2kN
k
2
+1

∏

1≤i≤j≤N

p(aij)daij. (4.8)

The advantage is that Trace(Ak) is a polynomial in the matrix entries,
and the integrals above can be readily evaluated.

For example, the integral for the average second moment is

1

22N2

∫ ∞

−∞
· · ·
∫ ∞

−∞

N∑

i=1

N∑

j=1

a2
ji · p(a11)da11 · · · p(aNN )daNN .

The integration factors as

∫ ∞

aij=−∞
a2

ijp(aij)daij ·
∏

(k,l) 6=(i,j)
k<l

∫ ∞

akl=−∞
p(akl)dakl = 1

(the first piece is 1 because it is a variance and thus is 1 by assumption,
while the others are 1 as this is one of the defining properties of a
probability distribution).
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While the second moment calculation looks simple, the higher mo-
ment calculations require more involved computations and combina-
torics44, in particular the Catalan numbers.45 The point is these compu-
tations can be done, and this analysis completes the proof (see [MT-B]
for the general arguments, and [Leh] for the combinatorics calcula-
tion).46

4.3. Additional statistics. There are numerous other statistics we
could investigate; the density of normalized eigenvalues is by no means
the most natural, but it does highlight the general features. The
more fundamental statistic is the spacings between adjacent normal-
ized eigenvalues, and not their density (though the density is used to
rescale to have mean spacing 1, allowing us to compare apples and
apples). These spacings can either be attacked directly, or through
the n-level correlations and combinatorics. It is conjectured that for
our ensembles of real symmetric matrices, the spacings between nor-
malized eigenvalues converges to a universal measure independent of
p. This measure is approximately (π/2)x exp (−(π/4)x2). Until very
recently this was only known if the matrix elements were chosen from
normal distributions; however, there has been great progress since the
original version of this paper was written. L. Erdös, J. A. Ramirez, B.
Schlein, T. Tao, V. Vu and H.-T. Yau [ERSY, ESY, TV1, TV2] have
removed this assumption and greatly generalized the class of matrices
where the conjecture is known; the interested reader should see these

44It is not hard to show the odd moments vanish by simple counting arguments.
For the even moments, if the aij ’s are not matched in pairs then there is negligible
contribution as N → ∞. The proof follows by counting how many tuples there
can be with a given matching, and then comparing that to Nk/2+1 (the proofs are
somewhat easier if our distribution is even). For example, as we are assuming our
distribution has zero mean, if ever there was an aiℓiℓ+1

that was unmatched (so
neither (iℓ, iℓ+1) or (iℓ+1, iℓ) occurs as the index in any other factor in the trace
expansion, then the expectation of this term must vanish as each aij is drawn from a
mean zero distribution. The number of valid pairings of the aij ’s (where everything
is matched in pairs) is (2k−1)!! = (2k−1)(2k−3) · · · , which is the 2kth moment of
the standard normal; not ever matching contributes fully, though, and this is why
the resulting moments are significantly smaller than the Gaussian’s.

45The Catalan numbers are Cn = 1
n+1

(
2n
n

)
. They arise in a variety of combina-

torial problems; see for example [Stan].
46If the ensemble of matrices had a different symmetry, the start of the proof

proceeds as above but the combinatorics changes. For example, looking at Real
Symmetric Toeplitz matrices (matrices constant along diagonals) leads to very dif-
ferent combinatorics (and in fact a different density of states than the semi-circle);
see [HM, MMS]. If we looked at d-regular graphs, the combinatorics differs again,
this time involving local trees; see [McK].
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The local spacings of the central 3/5 of the eigenvalues
of 5000 300x300 uniform matrices, normalized in batches
of 20. 

Figure 8. Spacings between normalized eigenvalues of
5000 uniform matrices on [−1, 1] (size is 300).

papers for details. As the best result is constantly being improved, the
interested reader should check the arxiv, http://arxiv.org/, for the
current status.

Below we give some numerics from investigations in the bulk of the
spectrum (i.e., normalized eigenvalues near 0). Our first example is
when p is the uniform distribution on [−1, 1] (Figure 8). Already for
300× 300 matrices we see excellent agreement with the conjecture.

What about other distributions, for example the Cauchy density
(π(1 + x2))−1? We saw earlier that the density of states was decidedly
non-semi-circular. It is a different story for the spacings (Figure 9).
Already for 300 × 300 matrices we see excellent agreement with the
conjecture.

There are numerous other ensembles where the density of states is
non-semi-circular but the spacing between adjacent eigenvalues seems
to agree with the conjecture. For example, McKay [McK] proved the
density of states of d-regular graphs47 is Kesten’s measure (which does
converge to the semi-circle as d → ∞), and simulations by many (in-
cluding [JMRR]) see the conjectured behavior. This is also apparent in
more advanced tests, where the distribution of the largest eigenvalue
is observed to follow a β = 1 Tracy-Widom distribution (see [MNS]).
These distributions govern the largest eigenvalues in many settings;
see [TW1, TW2, TW3]. If the ensemble has a very different structure,

47A graph is d-regular if each vertex is connected to exactly d neighbors.
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Figure 9. Spacings between normalized eigenvalues of
5000 Cauchy matrices; the left are 100 × 100 and the
right are 300× 300.

however (such as the Toeplitz ensembles in [BDJ, HM, MMS]) then
both statistics could behave differently.

5. From Random Matrix Theory to Number Theory

We now discuss the path from random matrix theory to number the-
ory. As this story has been told numerous times, we concentrate on
some illuminating aspects and refer the reader to the references previ-
ously mentioned. We concentrate on a very small subset of statistics
and connections; for example, we will almost completely ignore the
contributions to studying moments of the zeta function. Our goal is
to explain how the behavior of some key statistics in number theory
are the same as the corresponding statistics in random matrix theory.
We concentrate on ζ(s) and its simplest generalization, Dirichlet L-
functions, though these results hold for a larger class of L-functions
as well (exactly how large a class is the subject of many research pro-
grams).

The starting point of our analysis is Riemann’s Explicit Formula,
which is a natural generalization of (2.5). Let φ(s) be a ‘nice’ function.
We have

1

2πi

∫

(c)

−ζ ′(s)

ζ(s)
φ(s)ds =

1

2πi

∫

(c)

∞∑

n=1

Λ(n)
φ(s)

ns
ds. (5.1)
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Shifting contours, by the residue theorem the left hand size is basically
φ(1)−∑ρ φ(ρ), while the right hand side is (for s = σ + it):

∫

(c)

∞∑

n=1

Λ(n)
φ(s)

ns
ds =

∞∑

n=1

Λ(n)

nσ

∫ ∞

−∞
φ (σ + it) e−it log ndt. (5.2)

The integral is basically the Fourier transform48 (up to some constants)
of f(t) = φ(σ + it). A careful analysis [MT-B] gives the following
explicit formula relating sums of a test function over zeros of ζ(s) to
sums of the Fourier transform over primes.

Theorem 5.1 (Explicit Formula). Let
∑

ρ denote the sum over the

non-trivial zeros of ζ(s) (i.e., the zeros in critical strip), g an even
Schwartz function49 of compact support and φ(r) =

∫∞
−∞ g(u)eirudu.

Write ρ as 1/2+ iγρ; if the Riemann Hypothesis is true then γρ is real.
We have

∑

ρ

φ(γρ) = 2φ

(
i

2

)
−
∑

p

∞∑

k=1

2 log p

pk/2
g (k log p)

+
1

π

∫ ∞

−∞

(
1

iy − 1
2

+
Γ′( iy

2
+ 5

4
)

Γ( iy
2

+ 5
4
)
− 1

2
log π

)
φ(y) dy;

note up to scale that g and φ are essentially a Fourier transform pair.

5.1. Preliminaries. We now come to the key moment of our story,
when Montgomery and Dyson [Mon] noticed the agreement between the
pair correlation of zeros of ζ(s) and eigenvalues of complex Hermitian
matrices. The pair correlation statistic of a set {x1, x2, . . .} is

lim
N→∞

#{i 6= j ≤ N : xi − xj ∈ I}
N

(5.3)

where I is an arbitrary interval. We can generalize this to triple corre-
lation (which would be how often pairs of differences are in a box) and
higher; knowing all the correlations is equivalent to knowing the spac-
ing between adjacent elements. Instead of using a box or hypercube
we can use a smooth test function.50 Odlyzko [Od1, Od2] observed
phenomenal agreement between adjacent zeros and the corresponding
distribution for spacings between adjacent eigenvalues of complex Her-
mitian matrices; see Figure 10.

48The Fourier transform of g is ĝ(ξ) =
∫∞

−∞
g(x)e−2πixξdx.

49This means for any m, n ≥ 0 that lim|x|→∞(1 + x2)mg(n)(x) = 0 (i.e., g and

all its derivatives tend to zero faster than any polynomial).
50We want (1) f(x1, . . . , xn) is symmetric; (2) f(x+t(1, . . . , 1)) = f(x) for t ∈ R;

(3) f(x)→ 0 rapidly as |x| → ∞ in the hyperplane
∑

k xj = 0; see [RS].
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Figure 10. 70 million spacings between adjacent zeros
of ζ(s), starting at the 1020th zero, versus the correspond-
ing results for eigenvalues of complex Hermitian matrices
(from Odlyzko).

Hejhal [Hej] proved (for suitable test functions) that the triple cor-
relation of ζ(s) agrees with random matrix theory, while Rudnick and
Sarnak [RS] showed agreement with the n-level correlations of any L-
function attached to a cuspidal automorphic representation of GLm/Q.
To describe these L-functions in detail would be too much of a di-
gression, so we will content ourselves with a very brief introduction,
referring the interested reader to [RS] for details. The Riemann zeta
function

ζ(s) =

∞∑

n=1

1

ns
=

∏

p prime

(
1− 1

ps

)−1

(5.4)

has an Euler product, a functional equation, and is conjectured to have
all of its zeros in the critical strip 0 ≤ ℜ(s) ≤ 1 on the line ℜ(s) = 1/2.
The generalization is a series such as

∑∞
n=1 an/ns, where the an are

of arithmetic interest. In order to call this series an L-function, we
require it to have certain properties (such as an Euler product and a
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functional equation, as well as some growth rates on the an’s). We call
these L-functions, and they arise throughout number theory.51

In random matrix theory, in order to understand the behavior of the
eigenvalues of one matrix A we embedded it in a family of random
matrices, and showed that with high probability the behavior of the
eigenvalues of A are close to the ensemble average (at least as N →∞).
For the n-level correlations, we do not need to perform any averaging
over L-functions; we may study an individual L-function. The reason
is that the density of zeros in the critical strip whose imaginary part
is of size T is (up to some constants) of size 1/ log T ; in other words,
the higher up we go, the more densely the zeros of an L-function are
packed together, and thus one L-function provides enough zeros high
up to average.

The results mentioned above suggested that, for the purposes of
number theory, it sufficed to know how random complex Hermitian
matrices behave, as the zeros of ζ(s) (and other L-functions) high up on
the critical line showed remarkable agreement with these eigenvalues.
This turned out, however, to only be part of the story. The reason is
that the n-level correlations are insensitive to finitely many zeros. In
other words, if we were to remove the 1701 zeros nearest to the critical
point s = 1/2, the n-level correlations would not change.52 This is
a major problem for number theory, as often we expect there to be
behavior at the central point of arithmetic interest.53

Katz and Sarnak [KaSa1, KaSa2] showed that, as the size of the
matrices tends to infinity, the n-level correlations of complex Hermitian
matrices also equals those of N × N unitary matrices, as well as its
orthogonal and symplectic subgroups.54 Thus when we say that the

51The earliest occurrence was probably in Dirichlet’s work, who used L-functions
attached to characters on (Z/mZ)∗ to study primes in arithmetic progressions.
Another example are elliptic curve L-functions, which (at least conjecturally) give
information about the group of Mordell-Weil group of rational solutions of the
elliptic curve.

52This is because the zeros are tending to infinity. Thus, given any zero and any
finite box, only finitely many zeros can be associated to it such that the required
differences lie in the box. Therefore, this zero has negligible contribution in the
limit as we are dividing by N .

53For example, the Birch and Swinnerton-Dyer conjecture states the order of
vanishing at the central point of an elliptic curve L-function equals the rank of the
Mordell-Weil group of rational solutions of the elliptic curve; this is quite important
information which we do not wish to discard!

54These classical compact groups are much more natural random matrix ensem-
bles. In our original formulation, we chose the matrix elements randomly and inde-
pendently from some probability distribution p. What should we take for p? The
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zeros behave like eigenvalues of complex Hermitian matrices, we could
have also said they behave like eigenvalues of unitary matrices (or one
of their subgroups).55 We thus need a new statistic to study which will
‘break’ this symmetry, and say which ensemble is truly modeling the
behavior. Further, our statistic should take into account the behavior
near the central point, as interesting arithmetic occurs there. One
popular choice is the 1-level density, which we now describe.

5.2. 1-level Density (Preliminaries). Let φ(x) be an even Schwartz
function. This means for any m, n ≥ 0 that lim|x|→∞(1 + x2)mφ(n)(x)
(i.e., φ and all its derivatives tend to zero faster than any polynomial).
We also assume the Fourier Transform56 is compactly supported; this

means there is some σ <∞ such that φ̂(ξ) = 0 if |ξ| ≥ σ.
Consider an L-function

L(s, f) =
∞∑

n=1

λf(n)

ns
; (5.5)

we assume this series converges for ℜ(s) > 1, has a meromorphic ex-
tension to all of C satisfying a functional equation, and has an Euler
product.57 We have remarked that high up, the spacing between zeros
is like 1/ logT at height T ; what is it near s = 1/2? The answer can
be deduced from an analysis of the functional equation, which shows
there is some number Cf (called the analytic conductor) such that the
zeros near the central point are spaced on the order of 1/ log Cf . This
suggests we study the following statistic:

GOE and GUE ensembles, where the entries are chosen from Gaussians, arise by
imposing invariance on Prob(A)dA under orthogonal (respectively unitary) trans-
formations; these are natural conditions to impose as the probability of a transfor-
mation should be independent of the coordinate system used to write it down. The
classical compact groups come endowed with a natural probability, namely Haar
measure.

55The eigenvalues of a unitary matrix are of the form eiθ. To see this, let v be an
eigenvector of U with eigenvalue λ. Note v∗U∗Uv = v∗v, which gives |λ|2||v||2 =
||v||2, so |λ| = 1. Thus, similar to real symmetric and complex Hermitian matrices,
we can parametrize the eigenvalues by a real quantity.

56We use the normalization φ̂(ξ) =
∫∞

−∞ φ(x)e−2πixξdx. The Fourier transform

has many nice properties on the Schwartz space (see [SS] for example).
57These are very strong conditions, and most choices of λf (n) will not satisfy

these requirements. Fortunately there are many choices that do work, and these
frequently encode information about arithmetically interesting problems. The most
studied examples include Dirichlet L-functions, modular and Maass forms; see [IK]
for details.



40 FRANK W. K. FIRK AND STEVEN J. MILLER

Definition 5.2 (The 1-level density). Let φ be an even Schwartz func-
tion and L(s, f) an L-function as above. The 1-level density is

D1,f (φ) =
∑

j

φ

(
γf,j

log Cf

2π

)
. (5.6)

We may generalize the above to n-level densities; while for some ap-
plications it is essential to understand these generalizations58, for many
purposes studying the 1-level density suffices. This statistic differs in
several important ways from the n-level correlation.

The first is that individual zeros now contribute in the limit. More-
over, most of the contribution is from the zeros near the central point
(thus this statistic is sensitive to what is happening there). This is
because φ is of rapid decay, so once we are a couple of average spacings
away, there is negligible contribution. There is a trade-off, namely it
no longer suffices to study just one L-function. The reason is we always
need something to average over, and there are just too few zeros near
the central point on this scale. The solution is to look at the zeros near
the central point for many L-functions that share common properties.
We average the 1-level densities over the family. Unlike the n-level cor-
relations, where we are looking high up on the critical line and see the
same behavior in all L-functions, we see very different behavior near
the central point, depending on what family of L-functions we study.

Katz and Sarnak [KaSa1, KaSa2] conjecture that to any ‘nice’ family
of L-functions, as the conductors tend to infinity the 1-level density of
the family agrees with the N →∞ scaling limit of a classical compact
group (typically N × N unitary, orthogonal or symplectic matrices).
Moreover, these groups all have distinguishable behavior. In other
words, the universality seen in the n-level correlations is broken.

Before describing the proof, we give some examples of families of
L-functions and the corresponding symmetries.

(1) Dirichlet L-functions: Let m be a prime and consider all non-
principal59 Dirichlet characters χ from (Z/mZ)∗ to the complex
numbers of absolute value 1. To each character χ we have an
L-function L(s, χ) =

∑
n χ(n)/ns =

∏
p(1 − χ(p)p−s)−1. As

q → ∞, the behavior agrees with the scaling limit of unitary

58For example, there are three flavors of orthogonal symmetry, and their 1-level

densities are indistinguishable if the support of φ̂ is contained in (−1, 1); however,
the 2-level densities of all three are distinguishable for arbitrarily small support
[Mil1]. Another example is in obtaining better decay rates for high vanishing at
the central point in a family [HM].

59This means we avoid the trivial character χ0(n) = 1 if n is relatively prime to
m and 0 otherwise; this character gives rise to a simple modification of ζ(s).
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matrices.60

(2) Cuspidal newforms: Let

Γ0(N) =

{(
a b
c d

)
:
ad− bc = 1

c ≡ 0(N)

}
. (5.7)

We say f is a weight k holomorphic cuspform of level N if

∀γ ∈ Γ0(N), f(γz) = (cz + d)kf(z), (5.8)

where γz = (az + b)/(cz + d). As k or N tend to infinity, the
behavior agrees with the scaling limit of orthogonal matrices.61

(3) Elliptic curves: Let E : y2 = x3 + A(T )x + B(T ) be an elliptic
curve over Q(T ). For each t ∈ Z we can specialize and get an
elliptic curve Et : y2 = x3 + A(t)x + B(t). We can build an
L-function, where ap(t) is related to the number of solutions to
y2 ≡ x3 + A(t)x + B(t) mod p. Our family is now t ∈ [X, 2X]
with X →∞, and these families have orthogonal symmetry.

In these and many other cases (see [DM1, FI, Gao, Gü, HM, HR,
ILS, KaSa2, Mil1, Mil5, Ro, Rub, Yo2] for a representative sampling of
results), we can show for suitably restricted φ that the 1-level density
agrees with the scaling limit of one of the mentioned classical compact
groups.

5.3. 1-level Density (Proofs). We briefly describe how the proofs
proceed. We concentrate on the family of Dirichlet characters with
prime conductor q tending to infinity. As in the proof of Wigner’s
semi-circle law, there are three steps.

⋄ We first must determine the correct scale to study the zeros near
the central point. The answer can be shown to follow from the func-
tional equation; in this case, we normalize the zeros by the factor
(log(m/π))/(2π).

60We could consider the related family of quadratic Dirichlet characters coming
from a fundamental discriminant d ∈ [X, 2X ] with X →∞; this family agrees with
the scaling limit of symplectic matrices.

61There are actually three flavors of orthogonal groups. If all the signs of the
functional equation are even, the corresponding group should be SO(2N), and
similarly if the signs are all odd. We refer the reader to the previously mentioned
surveys for the details.
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⋄ The next step is to relate what we want to study, namely the zeros
near the central point, to something we have a chance of understand-
ing, in this case the coefficients of the L-function, χ(n). We do this
with a generalization of Riemann’s explicit formula (this is the ana-
logue of the Eigenvalue Trace Lemma). Our result is a straightforward
generalization of the formula Riemann used to connect the zeros of
ζ(s) with the distribution of primes. The difference here is that we
have a more general test function. It can be shown (see [ILS, RS]) that
for φ an even Schwartz function and L(s, χ) =

∑
n χ(n)/ns a Dirichlet

L-function from a non-trivial character χ with conductor m and zeros
ρ = 1

2
+ iγχ,ρ, then

∑

ρ

φ

(
γχ,ρ

log(m/π)

2π

)
=

∫ ∞

−∞
φ(y)dy

−2
∑

p

log p

log(m/π)
φ̂

(
log p

log(m/π)

)
χ(p)

p1/2

−2
∑

p

log p

log(m/π)
φ̂

(
2

log p

log(m/π)

)
χ2(p)

p
+ O

(
1

log m

)
. (5.9)

Note the left hand side is a sum over zeros and the right hand side

a sum over the coefficients in the L-function. We also have φ̂ on the
right hand side. We now see how the support condition enters. As we

assume φ̂ is supported in (−σ, σ), this restricts the sums on the right
to having only finitely many terms. This is the 1-level density for one
Dirichlet L-function L(s, χ). We now average over all non-principal χ
(i.e., χ 6= χ0). We will see below that there are m− 2 such characters,
and thus we obtain

1

m− 2

∑

χ 6=χ0

∑

ρ

φ

(
γχ,ρ

log(m/π)

2π

)
=

∫ ∞

−∞
φ(y)dy

−2
∑

p

log p

p1/2 log(m/π)
φ̂

(
log p

log(m/π)

)
1

m− 2

∑

χ 6=χ0

χ(p)

−2
∑

p

log p

p log(m/π)
φ̂

(
2

log p

log(m/π)

)
1

m− 2

∑

χ 6=χ0

χ2(p) + O

(
1

log m

)
.

(5.10)

⋄ Similar to the proof of Wigner’s semi-circle law, our explicit for-
mula would be useless unless we can perform the averaging over the
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family. We briefly review some needed results about these characters
(see for instance [MT-B]), and then show how to handle the sums. Un-
fortunately, the averaging formulas in number theory are significantly
worse than the corresponding averaging formulas in random matrix
theory; this leads to far more restricted results in number theory.62

For m prime, the group (Z/mZ)∗ is cyclic of order m − 1;63 denote
its generator by g. Let ζm−1 = e2πi/(m−1). The principal character χ0

is given by

χ0(k) =

{
1 if (k, m) = 1

0 if (k, m) > 1.
(5.11)

As the characters are group homomorphisms from (Z/mZ)∗ to com-
plex numbers of absolute value 1, the m − 2 primitive characters are
determined by their action on g.64 Thus there exists an ℓ such that
χ(g) = ζℓ

m−1. A simple calculation (use the explicit representation for
the characters and the geometric series formula) shows that

∑

χ

χ(k) =

{
m− 1 if k ≡ 1 mod m

0 otherwise,
(5.12)

where we are summing over all characters, including the principal one.
It is easy to remove the contribution from the principal character, and
we find for any prime p 6= m

∑

χ 6=χ0

χ(p) =

{
−1 + m− 1 p ≡ 1(m)

−1 otherwise.
(5.13)

62In fact, the case being studied here has the best averaging formula! For cuspidal
newforms we have the Petersson formula, and for families of elliptic curves we
can use periodicity in evaluating Legendre sums of cubic polynomials. In general,
however, unless our family is obtained in some manner from a family such as one
of these, we do not possess the needed averaging formula.

63(Z/mZ)∗ is the set {1, 2, . . . , m − 1} where multiplication and addition are
modulo m; for example, if m = 17, x = 11 and y = 9 then xy = 99 = 5 · 17 + 14, so
xy ≡ 14 mod 17, while x + y = 20 ≡ 3 mod 17. The hardest step in proving that
this is a group under multiplication is finding inverses; one way to accomplish this
is with the Euclidean algorithm.

64These properties mean χ(1) = 1, χ(xy) = χ(x)χ(y) and χ(xr) = χ(x)r. Fur-
ther, though initially only defined on (Z/mZ)∗, we extend the definition to all of Z

by setting χ(n + ℓm) = χ(n). As gm−1 ≡ 1 mod m, χ(gm−1) = 1 or χ(g)m−1 = 1
for all χ. Thus χ(g) has to be an m − 1 root of unity. We see each of these roots
gives rise to a character (one of which is the principal or trivial character); by
multiplicativity once we know the character’s action on the generator we know it
everywhere.
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This is the desired averaging formula. We substitute it into

∑

p

log p

p1/2 log(m/π)
φ̂

(
log p

log(m/π)

)
1

m− 2

∑

χ 6=χ0

χ(p). (5.14)

We write f(x) ≪ g(x) if there is a C such that for all x sufficiently
large, |f(x)| ≤ Cg(x). Our function φ is bounded, and as p ≤ mσ,
log p≪ σ log(m/π) as m→∞. A simple calculation shows there is no
contribution if σ < 2:

−2

m− 2

mσ∑

p

log p

log(m/π)
φ̂

(
log p

log(m/π)

)
· p− 1

2

+ 2
m− 1

m− 2

mσ∑

p≡1(m)

log p

log(m/π)
φ̂

(
log p

log(m/π)

)
· p− 1

2

≪ 1

m

mσ∑

p

p−
1
2 +

mσ∑

p≡1(m)

p−
1
2 ≪ 1

m

mσ∑

k

k− 1
2 +

mσ∑

k≡1(m)
k≥m+1

k− 1
2

≪ 1

m

mσ∑

k

k− 1
2 +

1

m

mσ∑

k

k− 1
2 ≪ 1

m
mσ/2. (5.15)

It is conjectured that there should be no contribution for any finite σ;65

extending this further is related to some of the deepest questions about
how primes are distributed in arithmetic progressions.

5.4. Nuclear Physics Interpretation. It is interesting to interpret
our results on the 1-level density in the language of nuclear physics:

Zeros of L-functions ←→ Energy levels of heavy nuclei

Schwartz test function ←→ Neutron

Support of test function ←→ Neutron Energy.

65This is not surprising, as the above argument is quite crude, where we have
inserted absolute values and thus lost the expected cancelation due to the terms
having opposite sign.



NUCLEI, PRIMES AND THE RANDOM MATRIX CONNECTION 45

We expand on the above. Assuming the (Generalized) Riemann Hy-
pothesis66, the zeros of our L-functions lie on the critical line ℜ(s) =
1/2. Thus we may order them, and it makes sense to talk about spac-
ings between adjacent zeros. Following the Pólya-Hilbert dream (and
there are numerous people pursuing this), we may even try to search
for a physical system whose energy levels are these zeros! Regardless,
we have two sequences of real numbers: the zeros of our L-function(s)
and the energy levels of our heavy nucleus (nuclei).

How do we understand the structure of the nucleus? We bombard it
with low energy neutrons, and see what happens. The analogy on the
number theory side is we ‘bombard’ the zeros of our L-function with
our Schwartz test function; what we ‘see’ now is a sum over primes.

In physics, ideally we would like to be able to send in a neutron
with any energy; unfortunately, current technology only allows us to
send in neutrons with energy in a given band. Thus we cannot obtain
perfect information about the internal structure of the nucleus and its
energy levels. This corresponds exactly with number theory, where
the support of the Fourier transform of our Schwartz test function is
playing the role of the neutron’s energy. Bombarding the zeros with a
test function is equivalent to summing the Fourier transform against
related quantities, and our averaging formulas are only able to handle
certain restricted sums.

It is worth dwelling on this last observation a little more. The Heisen-
berg Uncertainty Principle can be recast in mathematical terms as a
statement about a function and its Fourier transform, namely it is not

possible to simultaneously localize f and f̂ (i.e., the product of the
variances, their spreads about their means, cannot be too small). Ide-
ally we would like to take δ(x− a) as our test function, as this would
allow us to understand whether or not there are zeros at a. In partic-
ular, if we take a = 0 we would understand the behavior at the critical
point. Unfortunately the Fourier transform of δ(x) is identically 1; this
corresponds to having absolutely no control on the prime sum side.

5.5. Future avenues. Random matrix theory has enjoyed remarkable
success in suggesting questions and predicting answers for number the-
ory. The n-level correlations and densities are two of many examples.
One problem, however, is that random matrix theory often cannot de-
tect the arithmetic of the L-functions, and this must be added (in a
sometimes unsatisfying manner). A terrific example of this is in the
study of moments of L-functions (see [CGo, CGh, CFKRS, KeSn1,

66This just asserts that any ‘nice’ L-function has all of its zeros in the critical
strip having real part equal to 1/2.
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KeSn2] and the references therein); see also the discussion below on
the hybrid product formulas of Gonek, Hughes and Keating.

For families of L-functions {L(s, fi)}fi∈Fi
(i ∈ {1, 2, . . . , I}), we can

form the Rankin-Selberg convolution and study the family

{L(s, f1 ⊗ · · · ⊗ fI)}(f1,...,fI)∈F1×···×FI
;

see [IK] for details.67 Given a family {L(s, fi)}fi∈Fi
, the Katz-Sarnak

conjecture states the behavior of zeros near the central point (as the
conductors tend to infinity) agrees with the N → ∞ scaling limit of
a subgroup of unitary matrices U(N). A natural question to ask is
how the behavior of zeros in the family of convolutions is related to the
behavior of the constituent families. Dueñez-Miller show that if the
family of L-functions are ‘nice’ (see [DM2] for statements and proofs68),
then we can attach a symmetry constant c(Fi) to each family satisfying
the following conditions:

(1) c(Fi) is 0 if the family has unitary symmetry, 1 if the family
has symplectic symmetry and −1 if the family has orthogonal
symmetry;

(2) c(Fi × Fj) = c(Fi)× c(Fj).

In other words, for many families the symmetry type of the convolution
is the product of the symmetry types.69 This leads to a very nice map
from families of L-functions to {0,±1}.70

Another problem is that the main term in the 1-level density agrees
with random matrix theory, but the arithmetic of the family does not

67If L(s, fi) = L∞;i(s)
∏

p

∏mi

j=1 (1−αj;i(p)p−s)−1, then L(s, f1⊗ f2) is related

to a product over primes of
∏m1

j=1

∏m2

k=1 (1−αj;1(p)αk;2(p)p−s)−1. It is conjectured
that these functions have functional equations, satisfy the Riemann hypothesis, et
cetera. The existence of the Rankin-Selberg convolution is known for just a few
choices of the fi’s.

68There are several difficulties with the proofs in general, ranging from not know-
ing properties of the Rankin-Selberg convolution in general to not having a good
averaging formula over general families.

69A special case of this theorem was discovered by Dueñez-Miller in [DM1] in
studies of a family of GL(4) and a family of GL(6) L-functions. The analysis there
led to a disproof of a folklore conjecture that the theory of low-lying zeros of L-
functions is equivalent to a theory of the distribution of signs of the functional
equations in the family; see [DM1, DM2] for details. The key ingredient in the
proofs is the universality of the second moments of the Satake parameters αj;i(p);
this is similar to the universality found by Rudnick and Sarnak [RS] in the n-level
correlations. The higher moments of the Satake parameters control the rate of
convergence to the random matrix predictions.

70Instead of attaching a symmetry constant, additionally one can attach a sym-
metry vector which incorporates other information, such as the rank of the family.
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surface until we examine the lower order terms (which control the rate
of convergence; see for example [FI, Mil5, Yo1]). One promising line
of research is the L-functions Ratios Conjecture [CFZ1, CFZ2], which
is supported by corresponding calculations for random matrix ensem-
bles (see [CS, GJMMNPP, Mil4, Mil6, MilMo, Sto] for some recent
work supporting these conjectures, especially [CS] for a very accessible
introduction to the method and a summary of its successes). An-
other approach is through hybrid product formulas [GHK]. A typical
L-function has two product representations, one as an Euler product
over primes, and one as a Hadamard product over its zeros. In this ap-
proach an L-function is modeled by the product of a partial Euler and a
partial Hadamard product. The Hadamard piece is believed to be well-
modeled by random matrix theory, while the Euler product introduces
the arithmetic. Thus the interplay between random matrix theory and
number theory continues, and what began as a chance meeting in the
1970’s now yields over 1,000,000 hits on a google search71 (as of August
2009).
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[Ro] E. Royer, Petits zéros de fonctions L de formes modulaires, Acta
Arith. 99 (2001), 47–172.



NUCLEI, PRIMES AND THE RANDOM MATRIX CONNECTION 53

[Rub] M. Rubinstein, Low-lying zeros of L-functions and random matrix
theory, Duke Math. J. 109 (2001), no. 1, 147–181.

[RS] Z. Rudnick and P. Sarnak, Zeros of principal L-functions and random
matrix theory, Duke Math. J. 81 (1996), 269–322.

[Sar] P. Sarnak Some applications of modular forms, Cambridge Trusts in
Mathemetics, Vol. 99, Cambridge University Press, Cambridge, 1990.

[Sel1] A. Selberg, On the zeros of Riemann’s zeta-function, Skr. Norske Vid.
Akad. Oslo I. (1942), no. 10, 59 pp.

[Sel2] A. Selberg, An Elementary Proof of the Prime Number Theorem, Ann.
Math. 50 (1949), 305–313.

[ShTa] J. A. Shohat and J. D. Tamarkin, The Problem of Moments, AMS,
Providence, RI, 1943.

[Si] B. Simon, The classical moment problem as a self-adjoint finite dif-
ference operator, Adv. Math. 137 (1998), no. 1, 82–203.

[Sl] N. J. A. Sloane, Article A000945, The
On-Line Encyclopedia of Integer Sequences.
http://www.research.att.com/∼njas/sequences/A000945.

[Stan] R. P. Stanley, Enumerative Combinatorics, vol. 2, Cambridge Univer-
sity Press, New York / Cambridge, 1999.

[St] H. M. Stark, The Gauss Class-Number Problems, Clay Math-
ematics Proceedings Volume 7, 2007, 247–250. Online at
http://www.claymath.org/publications/Gauss Dirichlet/stark.pdf

[SS] E. Stein and R. Shakarchi, Complex Analysis, Princeton University
Press, Princeton, NJ, 2003.

[Sto] J. Stopple, The quadratic character experiment, Experimental Math-
ematics 18 (2009), 193–200.

[TV1] T. Tao and V. Vu, From the Littlewood-Offord problem to the Circu-
lar Law: universality of the spectral distribution of random matrices,
Bull. Amer. Math. Soc. 46 (2009), 377–396.

[TV2] T. Tao and V. Vu, Random matrices: universality
of local eigenvalue statistics up to the edge, preprint.
http://arxiv.org/PS cache/arxiv/pdf/0908/0908.1982v1.pdf

[TW1] C. A. Tracy and H. Widom, Level-spacing distributions and the Airy
kernel, Commun. Math. Phys. 159 (1994), 151–174.

[TW2] C. Tracy and H. Widom, On Orthogonal and Sympletic Matrix En-
sembles, Communications in Mathematical Physics 177 (1996), 727–
754.

[TW3] C. Tracy and H. Widom, Distribution functions for largest eigenvalues
and their applications, ICM Vol. I (2002), 587–596.

[Wa] M. Watkins, Class numbers of imaginary quadratic fields, Mathemat-
ics of Computation 73 (2004), 907–938.

[Wei] W. Weibull , A statistical distribution function of wide applicability,
J. Appl. Mech. Trans. ASME. 18 (1951) 293–297.

[Wh] E. Whittaker, A Treatise on the Analytical Dynamics of Particles and
Rigid Bodies: With an Introduction to the Problem of Three Bodies,
Dover, New York, 1944.



54 FRANK W. K. FIRK AND STEVEN J. MILLER

[Wig1] E. Wigner, On the statistical distribution of the widths and spacings
of nuclear resonance levels, Proc. Cambridge Philo. Soc. 47 (1951),
790–798.

[Wig2] E. Wigner, Characteristic vectors of bordered matrices with infinite
dimensions, Ann. of Math. 2 (1955), no. 62, 548–564.

[Wig3] E. Wigner, Statistical Properties of real symmetric matrices. Pages
174–184 in Canadian Mathematical Congress Proceedings, University
of Toronto Press, Toronto, 1957.

[Wig4] E. Wigner, Characteristic vectors of bordered matrices with infinite
dimensions. II, Ann. of Math. Ser. 2 65 (1957), 203–207.

[Wig5] E. Wigner, Results and theory of resonance absorption, Gatlinburg
Conference on Neutron Physics by Time-of-Flight, Oak Ridge Na-
tional Lab. Report No. ORNL–2309 (1957), 59–70.

[Wig6] E. Wigner, On the distribution of the roots of certain symmetric ma-
trices, Ann. of Math. Ser. 2 67 (1958), 325–327.

[Wis] J. Wishart, The generalized product moment distribution in samples
from a normal multivariate population, Biometrika 20 A (1928), 32–
52.

[Wor] N. C. Wormald, Models of random regular graphs. Pages 239–298 in
Surveys in combinatorics, 1999 (Canterbury) London Mathematical
Society Lecture Note Series, vol. 267, Cambridge University Press,
Cambridge, 1999.

[Yo1] M. Young, Lower-order terms of the 1-level density of families of
elliptic curves, Int. Math. Res. Not. (2005), no. 10, 587–633.

[Yo2] M. Young, Low-lying zeros of families of elliptic curves, J. Amer.
Math. Soc. 19 (2006), no. 1, 205–250.

E-mail address : fwkfirk@aol.com

The Henry Koerner Center for Emeritus Faculty, Yale University,

New Haven, CT 06520

E-mail address : Steven.J.Miller@williams.edu

Department of Mathematics and Statistics, Williams College,

Williamstown, MA 01267


	1. Summary
	2. Introduction
	2.1. Number Theory Preliminaries
	2.2. Random Matrix Theory Preliminaries
	2.3. Why Random Matrix Theory

	3. Nuclear Physics History
	3.1. Introduction
	3.2. Nuclear Physics and Random Matrix Theory
	3.3. The Wigner Surmise
	3.4. Further Developments
	3.5. From Physics to Number Theory

	4. Wigner's Semi-circle law
	4.1. Wigner's Semi-circle Law (Statement)
	4.2. Wigner's Semi-circle Law (Sketch of Proof)
	4.3. Additional statistics

	5. From Random Matrix Theory to Number Theory
	5.1. Preliminaries
	5.2. 1-level Density (Preliminaries)
	5.3. 1-level Density (Proofs)
	5.4. Nuclear Physics Interpretation
	5.5. Future avenues

	References

