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In mammals, circadian periodicity has been described for gene expression in the hypothalamus and multiple
peripheral tissues. It is accepted that 10%–15% of all genes oscillate in a daily rhythm, regulated by an intrinsic
molecular clock. Statistical analyses of periodicity are limited by the small size of datasets and high levels of stochastic
noise. Here, we propose a new approach applying digital signal processing algorithms separately to each group of
genes oscillating in the same phase. Combined with the statistical tests for periodicity, this method identifies circadian
baseline oscillation in almost 100% of all expressed genes. Consequently, circadian oscillation in gene expression
should be evaluated in any study related to biological pathways. Changes in gene expression caused by mutations or
regulation of environmental factors (such as photic stimuli or feeding) should be considered in the context of changes
in the amplitude and phase of genetic oscillations.
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Introduction

Periodic patterns are widespread in the behavior, physiol-
ogy, and gene expression of almost all organisms from
cyanobacteria to humans. The most prevalent oscillating
pattern is circadian, or approximately daily rhythm. It is
commonly accepted that up to 15% of all mammalian genes
follow this rhythm entrained by photic stimuli resulting from
the alternating light anddarkperiods of the day. Themolecular
clock driven by positive and negative transcriptional regula-
tory feedback loops has been extensively studied [1]. The
central circadian clock is located in the suprachiasmic nucleus
in the brain [2], but active molecular clocks, presumably
synchronized by suprachiasmic nucleus–mediated activity,
have also been reported inperipheral tissues.Many researchers
have demonstrated that the analysis of circadian rhythms is
important for a complete understanding of both physiology
and pathology in mammalian and other species [3,4]. The idea
of multiplicity and diversity of biological oscillators in a living
cell has been championed inmuch earlier works of Selkov [5,6].
Robustness of a system with multiple oscillators has been also
demonstrated in theoretical models [7]. Our recent findings
demonstrate that the prominence and impact of oscillatory
processes in living tissues may still be underestimated.

Analysis of time series gene expression data for periodic
patterns presents a significant challenge. The number of time
points in such studies is limited by the affordability of
microarrays. Microarrays, widely used in analysis of gene
expression, allow simultaneous observation of thousands of
genes. However, microarray expression intensity of each
specific gene may have a high degree of stochastic variation
and are not always reliable for technological reasons. More
precise qRT-PCR analysis can be done to validate the
microarray expression estimation, but only for a small

number of selected genes. In a typical circadian study,
biological samples are taken every 2–4 h, and the duration
of the study covers no more than two complete periods (48 h).
Thus, the resulting profile for each gene is characterized by a
very low sampling rate. Combined with a high level of
stochastic noise, this makes the application of standard
periodicity tests difficult due to insufficient statistical power.
A number of algorithmic approaches have been applied
recently to identify periodically expressed genes among
thousands of time series profiles [8,9]. However, each of these
methods only considers one gene expression profile at a time
and lacks the statistical power to identify the circadian
component in more than a small percentage of genes. We
recognized and acknowledged this problem in our earlier
publications [10,11]. Here, we propose a different approach
to the analysis of periodicity in microarray gene expression
profiles that gives an alternative, and possibly more realistic,
estimation of the scale of oscillation in a living tissue.

Methods

Each gene expression profile is preprocessed by z-score
transformation, which equalizes the scale of variation
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between genes and centers each profile on zero. We start with
phase classification, assigning each gene a phase based on the
maximal correlation to an ideal cosine curve:
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Each gene expression profile is correlated to a series of
cosine curves generated with a phase shift t equal to the
interval between sample collection points (4 h for most
datasets). The phase tmax that produces the highest correlation
is considered the most likely phase for the gene x. This
method is superior to the assignment of phase based on the
position of peaks because it takes into account all data points
in the series. A pattern of alternating up-and-down trends,
detected by this approach, is more robust compared with the
position of a peak, especially in short noisy time series, where
a single uncertainty of two similar height peaks may result in
a 4-h phase difference. We perform the phase assignment for
all expression profiles before analyzing periodicity. The
provisionally assigned phase does not imply that the
expression profile is periodic. For each profile x, autocorre-
lation with the circadian lag (Rc) is calculated:

Rcðf Þ ¼
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All profiles are sorted first by phase and then by descending
order of autocorrelation with the circadian lag Rc. Previous
studies [10] indicate that autocorrelation values with the
circadian lag, if sorted, form a smooth line with no apparent
separation between oscillating and nonoscillating fractions.
From this point on in our analysis, each same-phase group of
genes is studied separately from the other groups. By linking
together all profiles of the same phase with equalized range of
variation (amplitude) in order of descending circadian
autocorrelation Rc, we generate a continuous stream Cph of

measurements. The stream carries a signal (i.e., circadian
frequency), which is clear on one end and deteriorates into
stochastic noise on the opposite end. Figure 1 outlines the
process described above by plotting the real data derived
from murine liver [11]. In this setting, the problem of
identifying circadian oscillating genes can be formulated as
finding a point in the continuum at which the circadian
frequency deteriorates below recognition at the p ¼ 0.05
confidence level. To solve this problem, we apply algorithms
commonly used in digital signal processing. This set of
algorithms and approaches is widely applied in various areas
of electronics, acoustics, and medicine. Digital representation
of analog signals allows the introduction of powerful filters,
increasing signal to noise ratio. Since we operate on micro-
array data already converted into a digital form, this makes
adaptation of digital signal processing algorithms developed
for other engineering applications fast and effective.
Each same-phase continuum is treated with a low-pass

frequency filter, and polynomial smoothing is applied. We
analyze each phase fraction separately to detect the point at
which the circadian signal deteriorates beyond the p ¼ 0.05
significance cutoff. A window W, covering a few circadian
periods of the stream, is transformed to frequency domain
using discrete Fourier transform (DFT). The resulting
periodogram Iw is compared to a periodogram of a randomly
permutated window Wr using the Kolmogorov-Smirnov (K-S)
goodness of fit test. We repeat the test, shifting the start of the
window W from the beginning (i.e., most clearly oscillating
genes) towards the end (most noisy profiles). The frame is
shifted each time by the number of time points, making one
complete gene expression profile. Once the point at which
the Iw does not differ significantly from a random periodo-
gram Iwr is detected, this is designated as the ‘‘cutoff’’; we
count all gene expression profiles above this point as having a
circadian signal. The schematic overview of the algorithm of
analysis of periodicity in phase continuum is given in Figure
S1. By summing results from each phase group, we estimate
the total number of circadian oscillating genes. The length of
the window W is a parameter that defines the level of
precision at which the point of signal deterioration can be
detected. If set to a minimum (the number of time points in a
separate expression profile), the method produces results
similar to the traditional approach described by Ptitsyn et al.
[10–12]. However, the number of periodically expressed genes
revealed by the minimal length window may be still different
due to the digital filters’ improvement of the signal-to-noise
ratio. Increasing the length of window W involves more time
points and thus increases the power of the statistical tests for
periodicity, but on the other hand reduces the precision at
which the point of signal deterioration can be located. Using
a relatively small W equal to four single expression profiles
offers a reasonable compromise between power (equivalent
to a four-times-longer time series) and specificity (plus or
minus four genes out of thousands represented on a micro-
array).

Results

We have analyzed the microarray data from multiple
microarray timeline experiments originating from independ-
ent sources and have found oscillating patterns with statisti-
cally significant circadian periodicity in as many as 99% of all
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Author Summary

Prior studies have reported that ;15% of expressed genes show a
circadian expression pattern in association with a specific function. A
series of experimental and computational studies of gene expres-
sion in various murine tissues has led us to a different conclusion. By
applying a new analysis strategy and a number of alternative
algorithms, we identify baseline oscillation in almost 100% of all
genes. While the phase and amplitude of oscillation vary between
different tissues, circadian oscillation remains a fundamental
property of every gene. Reanalysis of previously published data
also reveals a greater number of oscillating genes than was
previously reported. This suggests that circadian oscillation is a
universal property of all mammalian genes, although phase and
amplitude of oscillation are tissue-specific and remain associated
with a gene’s function. We hypothesize that the cell’s metabolic
respiratory cycle drives the oscillatory pattern of gene expression.
These findings imply that biological pathways should be considered
as dynamic systems of genes oscillating in coordination with each
other.
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genes present in the dataset (Table 1). As an alternative to the
K-S test, we have also applied the Fisher’s g-test and
autocorrelation analysis in the same window W sliding along
the phase continuum. These methods report the numbers
consistent with the K-S test. The exact numbers are slightly
different due to the fact that different algorithms exploit
different properties of oscillation (see [12] for benchmarks of
a number of periodicity tests). The digital filters improve the
ability to identify oscillation pattern, but the quantitative
effect is different in conjunction with the individual tests.
Overall in our study, the number of oscillating genes reported
approaches 100% of the total number of genes by more than
one test for each particular digital filter. Likewise, each
particular test reports nearly 100% oscillating genes with
application of more than one different filter. The effect of the

positional centering filter is noticeably different from the two
others shown in Table 1. Unlike the other two filters,
positional centering is an estimation based on the central
value of time points separated by a complete hypothetic
period (in this study, circadian), rather than smoothing of the
adjacent time points. In effect, it mimics the human eye
observing the heatmap in Figure 1, where all expression
profiles are stacked on top of each other, while other filters
mimic the human eye at it tries to follow the flow of curves in
Figure 2. Detection of periodicity in a continuous stream of
same-phase time points (phase continuum) has more than
one challenge: not only can stochastic variation can obscure
the baseline oscillation, but noisy profiles can also be
misclassified and placed in the wrong phase class. The order
in which single profiles are concatenated can differ slightly,

Figure 1. Analysis of Circadian Frequency in Separate Groups Classified by Phase

The heatmap (A) presents all 22,689 genes, separated in four same-phase groups. In each phase group, all gene expression profiles are sorted in the
descending order of the likeliness of periodicity (which can be estimated by a p-value of periodicity test or in this case by autocorrelation with shift by
one circadian period; see Text S1). The circadian autocorrelation is depicted on the right margin by intensity of gray (black corresponds to 100%
correlation, white to no correlation between two circadian periods in each profile). Each group of same-phase profiles can be considered separately
(B). Only a small portion of genes pass the standard periodicity test (above red tick mark at p¼ 0.05, estimated by Pt-test). However, the pattern of two
red and two green zones (elevated and reduced expression, correspondingly) extends beyond the cutoff. Periodic pattern is also obvious in many of the
expression profiles that have failed the test. A few examples of such profiles (C) are taken from the top, above the p-value cutoff, and from the bottom
of the same-phase class of profiles. These profiles, although not perfect, still demonstrate an obvious two-hump pattern over 2 d of observation.
doi:10.1371/journal.pcbi.0030120.g001
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depending on the preliminary estimation of oscillation
likeliness by autocorrelation or a p-value of one of the
periodicity tests [12] As a result, when periodicity is tested in
a sliding window covering a number of single gene expression
profiles, some windows may contain a mixture of periodic but
phase-misclassified—as well as stochastically varying—frag-
ments. The position-centering filter is more robust in
evaluating the mixture of ‘‘good’’ and ‘‘noisy’’ periods within
one window. On the other hand, centering may reduce the
signal-to-noise ratio, which explains its lower performance in
combination with Fisher’s g-test. Experimental validation of a
few selected genes involved in basic energy metabolism by
qRT-PCR has confirmed the presence of an oscillating
pattern in gene expression [10]. This circadian regulation of
essential metabolic pathways is likely to influence the
expression profile of downstream, metabolically dependent
genes.

The number of circadian oscillating genes we report by far
exceeds the expected 10%–15%, but is consistent with the
pattern visible on the heatmap plot of the whole dataset

grouped by phase. It is also consistent with previously
reported simulation studies [10] that pointed to the absence
of an identifiable nonoscillating fraction of genes in our
data. We believe that the source of the discrepancy results
from the intuitive, but unfounded, assumption made in the
formulation of the null hypothesis applied to tests of gene
expression profiles for periodicity. It is natural to suppose
that gene expression profiles that fail a statistical test for
periodicity are not periodic (i.e., expressed in a steady-line
manner). However, there are other reasons for the test to
fail: the time series acquired in a microarray or RT-PCR
experiment is too short, sampled at too low a level, and/or
includes a high degree of stochastic variation. Thus, failure
to pass a test for periodicity does not necessarily imply a
steady-line expression profile. This could simply reflect an
oscillating pattern obstructed by noise. The use of RT-PCR
as a standard for validation does not represent an improve-
ment, because the number of points is no higher than that of
the microarray experiment. Indeed, the low number of time
points and thus low sampling rate is the main problem for
identification of periodicity in gene expression profiles.
Consequently, all algorithms for analysis of periodicity are at
a disadvantage when applied to one gene at a time. Although
our same-phase continuum approach does not eliminate the
problem of low sampling rate, it increases the statistical
power by grouping genes oscillating in the same phase and
scaled to the same amplitude. These genes are also similar in
the likelihood of their oscillating pattern because they are
next to each other in the window W, ranked by circadian
autocorrelation. As a group, these genes provide a sufficient
number of time points to identify the pattern of circadian
oscillation with confidence. Conversion of single gene
profiles into a long continuous stream allows application
of digital signal processing to reduce the noise and enhance
the signal.

Figure 2. Processing of Phase Continuum by Digital Filters

Concatenation of single profiles in order of descending likeliness of oscillation (same as in Figure 1) within each same-phase group results in a stream of
measurements (phase continuum). Each of four phase continuums of murine liver starts with obviously circadian profiles, and each two consecutive
humps correspond to one gene. The oscillation signal deteriorates towards the end of each phase continuum. Here, each plot shows only the 100 first
and 100 last time points. The raw data (A) contain more noise even in the most periodic profiles (left half of each plot) and show obvious deterioration
of the circadian signal at the end (right halves). After application of digital filters (B), the same part of the continuum looks nearly free of noise, and
some circadian periodicity can be traced even among the least periodic genes. The latter observation is confirmed by application of a variety of
statistical tests for periodicity. The figure contains screenshots of actual data scaled down to fit.
doi:10.1371/journal.pcbi.0030120.g002

Table 1. Application of Digital Filters

Digital Filter Autocorrelation Fisher’s

g-Test

K-S Test

No filter 23.1% 10.2% 99.7%

Nonrecursive average filter (NRAF) 20.9% 20.5% 99.8%

Polynomial filter 16.3% 43.4% 99.9%

Positional centering filter 99% 99% 52.5%

The number of identified oscillating genes in white adipose tissue (Zvonic et al. dataset
[10]) is affected by application of different frequency filters and the statistical test for
periodicity. Description of digital filters and periodicity tests is given in Text S1.
doi:10.1371/journal.pcbi.0030120.t001
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Discussion

The concept that most, if not all, genes in a living cell
experience oscillation in expression is not necessarily
surprising. It has been previously reported that as many as
more than 60% of all genes in Saccharomyces cerevisae oscillate
in ultradian rhythm with a period of ;300 min [13]. In an
earlier work, Klevecz et al. [14] have also demonstrated a
genome-wide oscillation pattern with peaks of expression
coinciding with respiratory, early, or late reductive phases of
metabolic cycle. These studies used different experimental
techniques and obtained different periods of oscillation as
well as other details. However, both demonstrate the
prominence of rhythmic patterns generated by the most
important cellular mechanisms and affecting practically
every active gene. This rhythm is postulated to be a
primordial oscillator for modern organisms, while other
rhythms can be derived by period-doubling. Reanalyzing the
same data with our phase-continuum approach reveals
oscillation in practically 100% of genes, which confirms the
findings and provides an extra ground for the theory
proposed by the authors. Much earlier studies by Selkov
[5,6] have pointed out that basic cell metabolism is a natural
oscillator in and of itself. His studies emphasized the role of
oscillation in temporal compartmentalization of metabolic
function in cyanobacteria. Circadian regulation of genes
responsible for basic energy metabolism in mice has been
reported by Panda et al. [15], although not extrapolated to
gene expression in general. Our experimental RT-PCR
validation of selected microarray timelines also confirmed
periodic patterns in genes involved in regulation of oxidative
phosphorylation, such as PGC1a, LPL, PDK4, and many others
[10,11]. If genes regulating the main source of energy
oscillate, this must impose oscillation on a large number of
other genes, if not by direct transcription regulation, then
simply by variation of energy balance. This contrasts with the
relatively small number (only a few dozen to a few hundred)
of circadian genes that have been reported in the other
studies [15,16]. On the other hand, if temporal compartmen-
talization is important for oxidative phosphorylation in yeast
and makes such a massive impact on the expression pattern
of the absolute majority of other genes, it is reasonable to
extrapolate that the same organizing principle operates in
higher eukaryotes, mice and humans included, whose
metabolism is also dependent on oxidative phosphorylation.
Unfortunately, with the available sampling rate (one time
point in 4 h) and longer periods we cannot make a decisive
statement regarding gene expression oscillations in mammals
as has been concluded based on the respiratory oscillation in
yeast. Nevertheless, we can hypothesize that in mammals,
respiratory oscillation is coordinated with the circadian
rhythm observed in the vast majority of genes. Our analyses
show that there is no difference in the prominence of the
metabolically driven oscillation in yeast and the circadian
oscillation in multiple murine tissues. Genes involved in
oxidative phosphorylation and driving the ultradian oscil-
lation in yeast have homologous counterparts in mammals,
also oscillating, but synchronized with the circadian rhythm
of daily activity. Among other data we have analyzed three
murine liver sets obtained and published independently by
Panda et al. [15], Storch et al., [16], and Zvonic et al. [10].
These data were collected in similarly designed experiments,

differing with respect to the lighting regime during the
sample collection period. While the Zvonic et al. data was
collected in a continuous 12/12 h light/dark period, the Panda
et al. data were collected in complete darkness, and the
Storch et al. data were collected in constant dim light.
Comparison of gene oscillation patterns indicates that
neither complete exclusion nor leveling the oscillation of a
major entraining factor (photic stimulation) eliminates
oscillation, but does modulate the outcome. In contrast to
the normal function represented in the Zvonic et al. dataset,
two other murine liver sets show higher fluctuation in
amplitude between periods. Phase classes in the Zvonic et
al. data have approximately equal numbers of genes, while the
Panda et al. and Storch et al. datasets have different, unequal
numbers of genes in phase classes. This observation supports
the conclusion that the principal function of mammalian
circadian molecular clock is to maintain temporary time-
keeping, adjustment, and synchronization between metabolic
rhythms and environmental factors.
The rhythmicity of gene expression itself is important for

understanding and modeling of the interaction and regu-
lation of gene expression in the context of biological
pathways. Each interaction in a biological pathway takes
place under constantly changing circumstances throughout
the day. Oscillation of interacting genes has to be synchron-
ized in order to maintain specific concentrations of gene
products and their metabolic substrates at a particular time.
Synchronization of oscillation among cells is an essential
property of each tissue, or at least of each tissue we studied.
We would not be able to observe the rhythmic pattern if it
was not synchronized through the cell interaction on the
tissue level. However, it is likely that different mechanisms
are involved in the coordination of gene expression between
tissues on the organism level. Our studies indicate that while
thousands of expressed genes oscillate, the phase of oscil-
lation is highly tissue-specific (Figure S2). Relatively few genes
are found to be oscillating in the same phase, even between
such similar tissues as white and brown fat. In contrast, the
amplitude of the oscillation is less specific. Relative fold
change within a circadian period does not vary significantly
between tissues for most genes (Figure 3). However, some
genes show a considerable difference in amplitude between
tissues. Remarkably, the amplitude of core circadian genes
does not stand out from the majority of expressed genes and
shows no significant variation among the tissues we studied.
If a perturbation is introduced into this oscillating system,

its effect depends on the circadian time- and wave-guiding
properties of the biological pathways. To illustrate this point
we have superimposed the cartoon of the leptin-signaling
pathway (fragment of the KEGG hsa04920 pathway) onto the
expression profiles of individual genes in the liver (Figure 4).
Leptin itself is hardly expressed in the liver, and thus its
profile shows little evidence of periodicity. However, in
adipose tissue, leptin expression is periodic (picture not
shown). All other components of the pathway show evident
periodicity. The timing of the incoming signal (a surge in
leptin concentration) is very important, because all compo-
nents of the signal transduction chain are expressed at
different levels throughout the day.
At present, a researcher in systems biology has a choice of

public or private databases of biological pathways and
interaction networks. However, none of the available data-
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bases contains the information about oscillation of expres-
sion level for the components of biological pathways (similar
to those presented in Figure 4). The biological pathways and
interaction networks are typically presented in a way similar
to the graphic depiction of direct current electric circuits. It
is assumed that up- or downregulation of a particular
component of a biological pathway causes changes in gene
expression of downstream elements of the same pathway in a
way similar to a direct current electric circuit. We believe that
this presentation does not reflect the complex nature of gene
expression and omits an important property of biological
systems. Biological pathways and interaction networks should
be viewed and modeled in a way more similar to the
alternating current circuits, in which phase and amplitude
are important characteristics of function of each component.
Timing is important for understanding the effect of each
biological signal as well as the waves spreading through the
system perturbed by signal. Like in alternating current
circuits, the likely primary source of oscillation is the ‘‘energy
source’’ of a cell, the respiratory cycle. The circadian
molecular clock based on negative feedback plays the
important role of temporary timekeeping, synchronizing
oscillation in gene expression levels with the major environ-
mental factors such as daylight. The commonality of
oscillation in gene expression reported in this paper suggests
that oscillation is a natural and important feature of all or
nearly all biological pathways. Genes that display daily
variation in their expression level may or may not be linked
directly to the circadian molecular clock. Regardless of
mechanism, the oscillation of these genes and their encoded
protein products will affect all elements of the system as a
whole. Hence, the same ‘‘alternating current’’ principle could
be applied in modeling all biological processes in mammals
and, possibly, in other organisms.

Figure 3. Amplitude of Oscillation Can Be Tissue-Specific

Here, each point represents a gene, and axes are amplitudes of
oscillation in murine liver and white and brown adipose tissues,
respectively. For each gene, the amplitude is divided by the mean value
(i.e., presented in a relative form independent from the overall level of
expression in particular tissue). Units on the axis are fold change relative
to the mean expression level through 12 time points of two complete
circadian periods.
doi:10.1371/journal.pcbi.0030120.g003

Figure 4. Diurnal Expression Pattern in Leptin-Signaling Pathway in Murine Liver

Leptin is expressed in liver at low levels and with an unclear circadian pattern, unlike the leptin expression in adipose tissues (unpublished data). Other
components of the leptin-signaling pathways in liver are expressed in a diurnal oscillating pattern. This oscillation has to be taken into account when
modeling signal transduction in liver. The plot areas contain actual screenshots of circadian profiles, scaled down to fit.
doi:10.1371/journal.pcbi.0030120.g004
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Supporting Information

Figure S1. The Algorithm of Phase Continuum Analysis of Periodicity
in a Large Number of Short Gene Expression Profiles

Found at doi:10.1371/journal.pcbi.0030120.sg001 (51 KB JPG).

Figure S2. Phase of Oscillation Is Highly Tissue-Specific

Four Venn diagrams present the co-occurrence of genes oscillating in
the same phase among three tissues. For example, only 268 genes are
found oscillating in the same phase among murine liver and brown
and white adipose tissues.

Found at doi:10.1371/journal.pcbi.0030120.sg002 (29 KB JPG).

Text S1. Supplementary Methods

Found at doi:10.1371/journal.pcbi.0030120.sd001 (131 KB DOC).
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