
Metaphysics, Metamathematics and Metabiology

Gregory Chaitin∗

Abstract

In this essay we present an information-theoretic perspective on epis-
temology using software models. We shall use the notion of algorithmic
information to discuss what is a physical law, to determine the limits of
the axiomatic method, and to analyze Darwin’s theory of evolution.

Weyl, Leibniz, complexity and the principle of
sufficient reason

The best way to understand the deep concept of conceptual complexity and
algorithmic information, which is our basic tool, is to see how it evolved, to
know its long history. Let’s start with Hermann Weyl and the great philoso-
pher/mathematician G. W. Leibniz. That everything that is true is true for a
reason is rationalist Leibniz’s famous principle of sufficient reason. The bits of
Ω seem to refute this fundamental principle and also the idea that everything
can be proved starting from self-evident facts.

What is a scientific theory?

The starting point of algorithmic information theory, which is the subject of
this essay, is this toy model of the scientific method:

theory/program/010 → Computer → experimental data/output/110100101.

A scientific theory is a computer program for producing exactly the experimental
data, and both theory and data are a finite sequence of bits, a bit string. Then
we can define the complexity of a theory to be its size in bits, and we can
compare the size in bits of a theory with the size in bits of the experimental
data that it accounts for.

That the simplest theory is best, means that we should pick the smallest
program that explains a given set of data. Furthermore, if the theory is the
same size as the data, then it is useless, because there is always a theory that is
∗Chaitin is emeritus researcher at the IBM Watson Research Center, an honorary professor

at the University of Buenos Aires, and a member of the Académie Internationale de Philosophie
des Sciences. His email address is gjchaitin@gmail.com.

1



the same size as the data that it explains. In other words, a theory must be a
compression of the data, and the greater the compression, the better the theory.
Explanations are compressions, comprehension is compression!

Furthermore, if a bit string has absolutely no structure, if it is completely
random, then there will be no theory for it that is smaller than it is. Most bit
strings of a given size are incompressible and therefore incomprehensible, simply
because there are not enough smaller theories to go around.

This software model of science is not new. It can be traced back via Hermann
Weyl (1932) to G. W. Leibniz (1686)! Let’s start with Weyl. In his little book on
philosophy The Open World: Three Lectures on the Metaphysical Implications
of Science, Weyl points out that if arbitrarily complex laws are allowed, then
the concept of law becomes vacuous, because there is always a law! In his view,
this implies that the concept of a physical law and of complexity are inseparable;
for there can be no concept of law without a corresponding complexity concept.
Unfortunately he also points out that in spite of its importance, the concept of
complexity is a slippery one and hard to define mathematically in a convincing
and rigorous fashion.

Furthermore, Weyl attributes these ideas to Leibniz, to the 1686 Discours de
métaphysique. What does Leibniz have to say about complexity in his Discours?
The material on complexity is in Sections V and VI of the Discours.

In Section V, Leibniz explains why science is possible, why the world is
comprehensible, lawful. It is, he says, because God has created the best possible,
the most perfect world, in that the greatest possible diversity of phenomena are
governed by the smallest possible set of ideas. God simultaneously maximizes
the richness and diversity of the world and minimizes the complexity of the
ideas, of the mathematical laws, that determine this world. That is why science
is possible!

A modern restatement of this idea is that science is possible because the
world seems very complex but is actually governed by a small set of laws having
low conceptual complexity.

And in Section VI of the Discours, Leibniz touches on randomness. He points
out that any finite set of points on a piece of graph paper always seems to follow
a law, because there is always a mathematical equation passing through those
very points. But there is a law only if the equation is simple, not if it is very
complicated. This is the idea that impressed Weyl, and it becomes the definition
of randomness in algorithmic information theory.1

Finding elegant programs

So the best theory for something is the smallest program that calculates it. How
can we be sure that we have the best theory? Let’s forget about theories and
just call a program elegant if it is the smallest program that produces the output

1Historical Note: Algorithmic information theory was first proposed in the 1960s by R.
Solomonoff, A. N. Kolmogorov, and G. J. Chaitin. Solomonoff and Chaitin considered this toy
model of the scientific method, and Kolmogorov and Chaitin proposed defining randomness
as algorithmic incompressibility.

2



that it does. More precisely, a program is elegant if no smaller program written
in the same language produces the same output.

So can we be sure that a program is elegant, that it is the best theory for its
output? Amazingly enough, we can’t: It turns out that any formal axiomatic
theory A can prove that at most finitely many programs are elegant, in spite
of the fact that there are infinitely many elegant programs. More precisely, it
takes an N -bit theory A, one having N bits of axioms, having complexity N ,
to be able to prove that an individual N -bit program is elegant. And we don’t
need to know much about the formal axiomatic theory A in order to be able to
prove that it has this limitation.

What is a formal axiomatic theory?

All we need to know about the axiomatic theory A, is the crucial requirement
emphasized by David Hilbert that there should be a proof-checking algorithm,
a mechanical procedure for deciding if a proof is correct or not. It follows that
we can systematically run through all possible proofs, all possible strings of
characters in the alphabet of the theory A, in size order, checking which ones
are valid proofs, and thus discover all the theorems, all the provable assertions
in the theory A.2

That’s all we need to know about a formal axiomatic theory A, that there is
an algorithm for generating all the theorems of the theory. This is the software
model of the axiomatic method studied in algorithmic information theory. If the
software for producing all the theorems is N bits in size, then the complexity
of our theory A is defined to be N bits, and we can limit A’s power in terms of
its complexity H(A) = N . Here’s how:

Why can’t you prove that a program is elegant?

Suppose that we have an N -bit theory A, that is, that H(A) = N , and that it is
always possible to prove that individual elegant programs are in fact elegant, and
that it is never possible to prove that inelegant programs are elegant. Consider
the following paradoxical program P :

P runs through all possible proofs in the formal axiomatic theory A,
searching for the first proof in A that an individual program Q is
elegant for which it is also the case that the size of Q in bits is larger
than the size of P in bits. And what does P do when it finds Q? It
runs Q and then P produces as its output the output of Q.

In other words, the output of P is the same as the output of the first provably
elegant program Q that is larger than P . But this contradicts the definition of
elegance! P is too small to be able to calculate the output of an elegant program
Q that is larger than P . We seem to have arrived at a contradiction!

2Historical Note: The idea of running through all possible proofs, of creativity by mechan-
ically trying all possible combinations, can be traced back through Leibniz to Ramon Llull in
the 1200s.

3



But do not worry; there is no contradiction. What we have actually proved
is that P can never find Q. In other words, there is no proof in the formal
axiomatic theory A that an individual program Q is elegant, not if Q is larger
than P . And how large is P? Well, just a fixed number of bits c larger than N ,
the complexity H(A) of the formal axiomatic theory A. P consists of a small,
fixed main program c bits in size, followed by a large subroutine H(A) bits in
size for generating all the theorems of A.

The only tricky thing about this proof is that it requires P to be able to
know its own size in bits. And how well we are able to do this depends on the
details of the particular programming language that we are using for the proof.
So to get a neat result and to be able to carry out this simple, elegant proof,
we have to be sure to use an appropriate programming language. This is one of
the key issues in algorithmic information theory, which programming language
to use.3

Farewell to reason: The halting probability Ω4

So there are infinitely many elegant programs, but there are only finitely many
provably elegant programs in any formal axiomatic theory A. The proof of
this is rather straightforward and short. Nevertheless, this is a fundamental
information-theoretic incompleteness theorem that is rather different in style
from the classical incompleteness results of Gödel, Turing and others.

An even more important incompleteness result in algorithmic information
theory has to do with the halting probability Ω, the numerical value of the
probability that a program p whose successive bits are generated by independent
tosses of a fair coin will eventually halt:

Ω =
∑

p halts

2−(size in bits of p).

To be able to define this probability Ω, it is also very important how you chose
your programming language. If you are not careful, this sum will diverge instead
of being ≤ 1 like a well-behaved probability should.

Turing’s fundamental result is that the halting problem is unsolvable. In
algorithmic information theory the fundamental result is that the halting prob-
ability Ω is algorithmically irreducible or random. It follows that the bits of Ω
cannot be compressed into a theory less complicated than they are. They are
irreducibly complex. It takes N bits of axioms to be able to determine N bits
of the numerical value

Ω = .1101011 . . .

of the halting probability. If your formal axiomatic theory A has H(A) = N ,
then you can determine the values and positions of at most N + c bits of Ω.

3See the chapter on “The Search for the Perfect Language” in Chaitin, Mathematics,
Complexity and Philosophy, in press.

4Farewell to Reason is the title of a book by Paul Feyerabend, a wonderfully provocative
philosopher. We borrow his title here for dramatic effect, but he does not discuss Ω in this
book or any of his other works.

4



In other words, the bits of Ω are logically irreducible, they cannot be proved
from anything simpler than they are. Essentially the only way to determine
what are the bits of Ω is to add these bits to your theory A as new axioms.
But you can prove anything by adding it as a new axiom. That’s not using
reasoning!

So the bits of Ω refute Leibniz’s principle of sufficient reason: they are
true for no reason. More precisely, they are not true for any reason simpler
than themselves. This is a place where mathematical truth has absolutely no
structure, no pattern, for which there is no theory!

Adding new axioms: Quasi-empirical mathematics5

So incompleteness follows immediately from fundamental information-theoretic
limitations. What to do about incompleteness? Well, just add new axioms,
increase the complexity H(A) of your theory A! That is the only way to get
around incompleteness.

In other words, do mathematics more like physics, add new axioms not be-
cause they are self-evident, but for pragmatic reasons, because they help math-
ematicians to organize their mathematical experience just like physical theories
help physicists to organize their physical experience. After all, Maxwell’s equa-
tions and the Schrödinger equation are not at all self-evident, but they work!
And this is just what mathematicians have done in theoretical computer science
with the hypothesis that P 6= NP , in mathematical cryptography with the hy-
pothesis that factoring is hard, and in abstract axiomatic set theory with the
new axiom of projective determinacy.6

Mathematics, biology and metabiology

We’ve discussed physical and mathematical theories; now let’s turn to biology,
the most exciting field of science at this time, but one where mathematics is
not very helpful. Biology is very different from physics. There is no simple
equation for your spouse. Biology is the domain of the complex. There are not
many universal rules. There are always exceptions. Math is very important
in theoretical physics, but there is no fundamental mathematical theoretical
biology.

This is unacceptable. The honor of mathematics requires us to come up with
a mathematical theory of evolution and either prove that Darwin was wrong
or right! We want a general, abstract theory of evolution, not an immensely

5The term quasi-empirical is due to the philosopher Imre Lakatos, a friend of Feyerabend.
For more on this school, including the original article by Lakatos, see the collection of quasi-
empirical philosophy of math papers edited by Thomas Tymoczko, New Directions in the
Philosophy of Mathematics.

6See the article on “The Brave New World of Bodacious Assumptions in Cryptography”
in the March 2010 issue of the AMS Notices, and the article by W. Hugh Woodin on “The
Continuum Hypothesis” in the June/July 2001 issue of the AMS Notices.

5



complicated theory of actual biological evolution. And we want proofs, not
computer simulations! So we’ve got to keep our model very, very simple.

That’s why this proposed new field is metabiology, not biology.
What kind of math can we use to build such a theory? Well, it’s certainly

not going to be differential equations. Don’t expect to find the secret of life in
a differential equation; that’s the wrong kind of mathematics for a fundamental
theory of biology.

In fact a universal Turing machine has much more to do with biology than a
differential equation does. A universal Turing machine is a very complicated new
kind of object compared to what came previously, compared with the simple, ele-
gant ideas in classical mathematics like analysis. And there are self-reproducing
computer programs, which is an encouraging sign.

There are in fact three areas in our current mathematics that do have some
fundamental connection with biology, that show promise for math to continue
moving in a biological direction:

Computation, Information, Complexity.

DNA is essentially a programming language that computes the organism and
its functioning; hence the relevance of the theory of computation for biology.

Furthermore, DNA contains biological information. Hence the relevance of
information theory. There are in fact at least four different theories of informa-
tion:

• Boltzmann statistical mechanics and Boltzmann entropy,

• Shannon communication theory and coding theory,

• algorithmic information theory (Solomonoff, Kolmogorov, Chaitin), which
is the subject of this essay, and

• quantum information theory and qubits.

Of the four, AIT (algorithmic information theory) is closest in spirit to biology.
AIT studies the size in bits of the smallest program to compute something. And
the complexity of a living organism can be roughly (very roughly) measured
by the number of bases in its DNA, in the biological computer program for
calculating it.

Finally, let’s talk about complexity. Complexity is in fact the most distin-
guishing feature of biological as opposed to physical science and mathematics.
There are many computational definitions of complexity, usually concerned with
computation times, but again AIT, which concentrates on program size or con-
ceptual complexity, is closest in spirit to biology.

Let’s emphasize what we are not interested in doing. We are certainly not
trying to do systems biology: large, complex realistic simulations of biological
systems. And we are not interested in anything that is at all like Fisher-Wright
population genetics that uses differential equations to study the shift of gene
frequencies in response to selective pressures.

6



We want to use a sufficiently rich mathematical space to model the space of
all possible designs for biological organisms, to model biological creativity. And
the only space that is sufficiently rich to do that is a software space, the space
of all possible algorithms in a fixed programming language. Otherwise we have
limited ourselves to a fixed set of possible genes as in population genetics, and
it is hopeless to expect to model the major transitions in biological evolution
such as from single-celled to multicellular organisms, which is a bit like taking
a main program and making it into a subroutine that is called many times.

Recall the cover of Stephen Gould’s Wonderful Life on the Burgess shale and
the Cambrian explosion? Around 250 primitive organisms with wildly differing
body plans, looking very much like the combinatorial exploration of a software
space. Note that there are no intermediate forms; small changes in software
produce vast changes in output.

So to simplify matters and concentrate on the essentials, let’s throw away
the organism and just keep the DNA. Here is our proposal:

Metabiology: a field parallel to biology that studies the random evo-
lution of artificial software (computer programs) rather than natural
software (DNA), and that is sufficiently simple to permit rigorous
proofs or at least heuristic arguments as convincing as those that
are employed in theoretical physics.

This analogy may seem a bit far-fetched. But recall that Darwin himself was
inspired by the analogy between artificial selection by plant and animal breeders
and natural section imposed by malthusian limitations.

Furthermore, there are many tantalizing analogies between DNA and large,
old pieces of software. Remember bricolage, that Nature is a cobbler, a tinkerer?
In fact, a human being is just a very large piece of software, one that is 3× 109

bases = 6 × 109 bits ≈ one gigabyte of software that has been patched and
modified for more than a billion years: a tremendous mess, in fact, with bits
and pieces of fish and amphibian design mixed in with that for a mammal.7 For
example, at one point in gestation the human embryo has gills. As time goes
by, large human software projects also turn into a tremendous mess with many
old bits and pieces.

The key point is that you can’t start over, you’ve got to make do with what
you have as best you can. If we could design a human being from scratch we
could do a much better job. But we can’t start over. Evolution only makes small
changes, incremental patches, to adapt the existing code to new environments.

So how do we model this? Well, the key ideas are:

Evolution of mutating software,

and:

Random walks in software space.
7See Neil Shubin, Your Inner Fish: A Journey into the 3.5-Billion-Year History of the

Human Body.

7



That’s the general idea. And here are the specifics of our current model,
which is quite tentative.

We take an organism, a single organism, and perform random mutations
on it until we get a fitter organism. That replaces the original organism, and
then we continue as before. The result is a random walk in software space with
increasing fitness, a hill-climbing algorithm in fact.8

Finally, a key element in our proposed model is the definition of fitness. For
evolution to work, it is important to keep our organisms from stagnating. It is
important to give them something challenging to do.

The simplest possible challenge to force our organisms to evolve is what
is called the Busy Beaver problem, which is the problem of providing concise
names for extremely large integers. Each of our organisms produces a single
positive integer. The larger the integer, the fitter the organism.9

The Busy Beaver function of N , BB(N), that is used in AIT is defined to
be the largest positive integer that is produced by a program that is less than
or equal to N bits in size. BB(N) grows faster than any computable function of
N and is closely related to Turing’s famous halting problem, because if BB(N)
were computable, the halting problem would be solvable.10

Doing well on the Busy Beaver problem can utilize an unlimited amount of
mathematical creativity. For example, we can start with addition, then invent
multiplication, then exponentiation, then hyper-exponentials, and use this to
concisely name large integers:

N + N → N ×N → NN → NNN

→ . . .

There are many possible choices for such an evolving software model: You
can vary the computer programming language and therefore the software space,
you can change the mutation model, and eventually you could also change the
fitness measure. For a particular choice of language and probability distribution
of mutations, and keeping the current fitness function, it is possible to show that
in time of the order of 2N the fitness will grow as BB(N), which grows faster
than any computable function of N and shows that genuine creativity is taking
place, for mechanically changing the organism can only yield fitness that grows
as a computable function.11

8In order to avoid getting stuck on a local maximum, in order to keep evolution from
stopping, we stipulate that there is a non-zero probability to go from any organism to any
other organism, and − log2 of the probability of mutating from A to B defines an important
concept, the mutation distance, which is measured in bits.

9Alternative formulations: The organism calculates a total function f(n) of a single non-
negative integer n and f(n) is fitter than g(n) if f(n)/g(n)→∞ as n→∞. Or the organism
calculates a (constructive) Cantor ordinal number and the larger the ordinal, the fitter the
organism.

10Consider BB′(N) defined to be the maximum run-time of any program that halts that is
less than or equal to N bits in size.

11Note that to actually simulate our model an oracle for the halting problem would have to
be employed to avoid organisms that have no fitness because they never calculate a positive
integer. This also explains how the fitness can grow faster than any computable function. In
our evolution model, implicit use is being made of an oracle for the halting problem, which
answers questions whose answers cannot be computed by any algorithmic process.

8



So with random mutations and just a single organism we actually do get
evolution, unbounded evolution, which was precisely the goal of metabiology!

This theorem may seem encouraging, but it actually has a serious problem.
The times involved are so large that our search process is essentially ergodic,
which means that we are doing an exhaustive search. Real evolution is not
at all ergodic, since the space of all possible designs is much too immense for
exhaustive search.

It turns out that with this same model there is actually a much quicker
ideal evolutionary pathway that achieves fitness BB(N) in time of the order of
N . This path is however unstable under random mutations, plus it is much
too good: Each organism adds only a single bit to the preceding organism,
and immediately achieves near optimal fitness for an organism of its size, which
doesn’t seem to at all reflect the haphazard, frozen-accident nature of what
actually happens in biological evolution.12

So that is the current state of metabiology: a field with some promise, but
not much actual content at the present time. The particular details of our
current model are not too important. Some kind of mutating software model
should work, should exhibit some kind of basic biological features. The challenge
is to identify such a model, to characterize its behavior statistically,13 and to
prove that it does what is required.

References

[1] G. J. Chaitin, Thinking about Gödel and Turing: Essays on Complexity,
1970–2007, World Scientific (2007).

[2] G. J. Chaitin, Mathematics, Complexity and Philosophy, Midas, in press.
(Draft at http://www.cs.umaine.edu/~chaitin/midas.html.)

[3] S. Gould, Wonderful Life, Norton (1989).

[4] N. Koblitz and A. Menezes, “The brave new world of bodacious assumptions
in cryptography,” AMS Notices 57, 357–365 (2010).

[5] G. W. Leibniz, Discours de métaphysique, suivi de Monadologie, Gallimard
(1995).

[6] N. Shubin, Your Inner Fish, Pantheon (2008).

[7] T. Tymoczko, New Directions in the Philosophy of Mathematics, Princeton
University Press (1998).

[8] H. Weyl, The Open World, Yale University Press (1932).

12The Nth organism in this ideal evolutionary pathway is essentially just the first N bits of
the numerical value of the halting probability Ω. Can you figure out how to compute BB(N)
from this?

13For instance, will some kind of hierarchical structure emerge? Large human software
projects are always written that way.

9



[9] W. H. Woodin, “The continuum hypothesis, Part I,” AMS Notices 48, 567–
576 (2001).

Note added in proof: The mathematical structure of metabiology is start-
ing to emerge. Please see my paper “To a mathematical theory of evolu-
tion and biological creativity” at http://www.cs.auckland.ac.nz/CDMTCS/
/researchreports/391greg.pdf.

10


